リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Excitonic Coupling on a Heliobacterial Symmetrical Type-I Reaction Center: Comparison with Photosystem I」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Excitonic Coupling on a Heliobacterial Symmetrical Type-I Reaction Center: Comparison with Photosystem I

Kitoh-Nishioka, Hirotaka Shigeta, Yasuteru Itoh, Shigeru Kimura, Akihiro 名古屋大学

2020.01.16

概要

The excitonic couplings among 54 bacteriochlorophylls-g (BChl)-g, 4 BChl-g′, and 2 Chl-aF pigments were calculated in the type-I homodimeric reaction center (RC) of Heliobacterium modesticaldum (hRC) and compared with those in the photosystem I (PSI) type-I heterodimeric RC. The advanced combination of transition charge of electrostatic potential (TrESP) with the Poisson equation (Poisson–TrESP), applied for the first time to the excitonic coupling calculation, gave a reliable model in contrast to a model calculated by simple standard dipole–dipole interaction approximation that was qualitatively valid for hRC but not for PSI. The simplest method for the calculation of the long-range contribution to the excitonic coupling on RCs is shown to be the TrESP method, which considers a distance- and orientation-independent local-field/screening correction factor. The excitonic couplings of the special pairs, P800 in hRC and P700 in PSI, are also calculated by the fragment excitation difference scheme at the configuration-interaction singles (CIS) level, which considers the charge-transfer characteristics of the relevant excitonic states. The calculation realized that the reported parameter values for P800 and P700 were better than the Poisson–TrESP calculation. Virtual exchanges between Chl-a and BChl-g on hRC and PSI indicated that the difference between hRC and PSI arises from the different electronic structures of Chl-a and BChl-g pigments themselves and the different arrangements on hRC and PSI. The contributions of excitonic couplings to the functional properties and evolutionary modifications of hRC and PSI are also discussed.

参考文献

(1) Gisriel, C.; Sarrou, I.; Ferlez, B.; Golbeck, J. H.; Redding, K. E.; Fromme, R. Structure of a Symmetric Photosynthetic Reaction Center–Photosystem. Science 2017, 357,

1021–1025.

(2) Kondo, T.; Matsuoka, M.; Azai, C.; Kobayashi, M.; Itoh, S.; Oh-oka, H. Light-Induced

Electron Spin-Polarized (ESP) EPR Signal of the P800+ Menaquinone– Radical Pair

State in Oriented Membranes of Heliobacterium modesticaldum: Role/Location of

Menaquinone in the Homodimeric Type I Reaction Center. J. Phys. Chem. B 2018,

122, 2536–2543.

(3) Heinnickel, M.; Golbeck, J. H. Heliobacterial Photosynthesis. Photosynth. Res. 2007,

92, 35–53.

(4) R´emigy, H.-W.; Stahlberg, H.; Fotiadis, D.; M¨

uller, S. A.; Wolpensinger, B.; Engel, A.;

Hauska, G.; Tsiotis, G. The Reaction Center Complex from the Green Sulfur Bacterium Chlorobium tepidum: a Structural Analysis by Scanning Transmission Electron

Microscopy. J. Mol. Biol. 1999, 290, 851 – 858.

(5) Garcia Costas, A. M.; Liu, Z.; Tomsho, L. P.; Schuster, S. C.; Ward, D. M.;

Bryant, D. A. Complete Genome of Candidatus Chloracidobacterium thermophilum, a

Chlorophyll-Based Photoheterotroph Belonging to the Phylum Acidobacteria. Environ.

Microbiol. 2012, 14, 177–190.

(6) Oh-oka, H. Type 1 Reaction Center of Photosynthetic Heliobacteria †. Photochem.

Photobiol. 2007, 83, 177–186.

(7) Orf, G. S.; Gisriel, C.; Redding, K. E. Evolution of Photosynthetic Reaction Centers:

Insights from the Structure of the Heliobacterial Reaction Center. Photosynth. Res.

2018, 138, 11–37.

36

(8) Trost, J. T.; Blankenship, R. E. Isolation of a Photoactive Photosynthetic Reaction

Center-Core Antenna Complex from Heliobacillus mobilis. Biochemistry 1989, 28,

9898–9904.

(9) Neerken, S.; Aartsma, T. J.; Amesz, J. Pathways of Energy Transformation in Antenna

Reaction Center Complexes of Heliobacillus mobilis. Biochemistry 2000, 39, 3297–3303.

(10) Liebl, U.; Lambry, J.-C.; Leibl, W.; Breton, J.; Martin, J.-L.; Vos, M. H. Energy and

Electron Transfer upon Selective Femtosecond Excitation of Pigments in Membranes

of Heliobacillus mobilis. Biochemistry 1996, 35, 9925–9934.

(11) Nuijs, A. M.; Dorssen, R. J. v.; Duysens, L. N. M.; Amesz, J. Excited States and

Primary Photochemical Reactions in the Photosynthetic Bacterium Heliobacterium

chlorum. Proc. Natl. Acad. Sci. U.S.A. 1985, 82, 6865–6868.

(12) Van Noort, P. I.; Gormin, D. A.; Aartsma, T. J.; Amesz, J. Energy Transfer and

Primary Charge Separation in Heliobacterium chlorum Studied by Picosecond TimeResolved Transient Absorption Spectroscopy. Biochim. Biophys. Acta, Bioenerg. 1992,

1140, 15 – 21.

(13) Lin, S.; Chiou, H.; Kleinherenbrink, F.; Blankenship, R. Time-Resolved Spectroscopy of

Energy and Electron Transfer Processes in the Photosynthetic Bacterium Heliobacillus

mobilis. Biophys. J. 1994, 66, 437 – 445.

(14) Miyamoto, R.; Iwaki, M.; Mino, H.; Harada, J.; Itoh, S.; Oh-oka, H. ESR Signal of

the Iron-Sulfur Center FX and Its Function in the Homodimeric Reaction Center of

Heliobacterium modesticaldum,. Biochemistry 2006, 45, 6306–6316.

(15) Kondo, T.; Itoh, S.; Matsuoka, M.; Azai, C.; Oh-oka, H. Menaquinone as the Secondary Electron Acceptor in the Type I Homodimeric Photosynthetic Reaction Center

of Heliobacterium modesticaldum. J. Phys. Chem. B 2015, 119, 8480–8489.

37

(16) Kondo, T.; Matsuoka, M.; Azai, C.; Itoh, S.; Oh-oka, H. Orientations of Iron–Sulfur

Clusters FA and FB in the Homodimeric Type-I Photosynthetic Reaction Center of

Heliobacterium modesticaldum. J. Phys. Chem. B 2016, 120, 4204–4212.

(17) Kimura, A.; Itoh, S. Theoretical Model of Exciton States and Ultrafast Energy Transfer

in Heliobacterial Type I Homodimeric Reaction Center. J. Phys. Chem. B 2018, 122,

11852–11859.

(18) F¨orster, T. In Modern Quantum Chemistry; Sinanoglu, O., Ed.; Academic Press: New

York, 1965; Vol. III; pp 93–137.

(19) Byrdin, M.; Jordan, P.; Krauss, N.; Fromme, P.; Stehlik, D.; Schlodder, E. Light Harvesting in Photosystem I: Modeling Based on the 2.5-˚

A Structure of Photosystem I

from Synechococcus elongatus. Biophys. J. 2002, 83, 433 – 457.

(20) Khan, Y. R.; Dykstra, T. E.; Scholes, G. D. Exploring the F¨orster Limit in a Small

FRET Pair. Chem. Phys. Lett. 2008, 461, 305 – 309.

(21) Mu˜

noz-Losa, A.; Curutchet, C.; Krueger, B. P.; Hartsell, L. R.; Mennucci, B. Fretting

about FRET: Failure of the Ideal Dipole Approximation. Biophys. J. 2009, 96, 4779 –

4788.

(22) Pearlstein, R. M. In Chlorophylls; Scheer, H., Ed.; CRC Press, Boca Raton, 1965; pp

1047–1078.

(23) Weiss, C. The Pi Electron Structure and Absorption Spectra of Chlorophylls in Solution.

J. Mol. Spectrosc. 1972, 44, 37 – 80.

(24) Chang, J. C. Monopole Effects on Electronic Excitation Interactions between Large

Molecules. I. Application to Energy Transfer in Chlorophylls. J. Chem. Phys. 1977,

67, 3901–3909.

38

(25) Sauer, K.; Cogdell, R. J.; Prince, S. M.; Freer, A.; Isaacs, N. W.; Scheer, H. StructureBased Calculations of the Optical Spectra of the LH2 Bacteriochlorophyll-Protein Complex from Rhodopseudomonas acidophila. Photochem. Photobiol. 1996, 64, 564–576.

(26) Krueger, B. P.; Scholes, G. D.; Fleming, G. R. Calculation of Couplings and EnergyTransfer Pathways between the Pigments of LH2 by the ab Initio Transition Density

Cube Method. J. Phys. Chem. B 1998, 102, 5378–5386.

(27) Hsu, C.-P.; Fleming, G. R.; Head-Gordon, M.; Head-Gordon, T. Excitation Energy

Transfer in Condensed Media. J. Chem. Phys. 2001, 114, 3065–3072.

(28) Curutchet, C.; Mennucci, B. Toward a Molecular Scale Interpretation of Excitation

Energy Transfer in Solvated Bichromophoric Systems. J. Am. Chem. Soc. 2005, 127,

16733–16744.

(29) Russo, V.; Curutchet, C.; Mennucci, B. Towards a Molecular Scale Interpretation of

Excitation Energy Transfer in Solvated Bichromophoric Systems. II. The Through-Bond

Contribution. J. Phys. Chem. B 2007, 111, 853–863.

(30) Scholes, G. D.; Curutchet, C.; Mennucci, B.; Cammi, R.; Tomasi, J. How Solvent

Controls Electronic Energy Transfer and Light Harvesting. J. Phys. Chem. B 2007,

111, 6978–6982.

(31) Curutchet, C.; Scholes, G. D.; Mennucci, B.; Cammi, R. How Solvent Controls Electronic Energy Transfer and Light Harvesting: Toward a Quantum-Mechanical Description of Reaction Field and Screening Effects. J. Phys. Chem. B 2007, 111, 13253–13265.

(32) Madjet, M. E.; Abdurahman, A.; Renger, T. Intermolecular Coulomb Couplings from

Ab Initio Electrostatic Potentials: Application to Optical Transitions of Strongly Coupled Pigments in Photosynthetic Antennae and Reaction Centers. J. Phys. Chem. B

2006, 110, 17268–17281.

39

(33) Fujimoto, K. J.; Hayashi, S. Electronic Coulombic Coupling of Excitation-Energy

Transfer in Xanthorhodopsin. J. Am. Chem. Soc. 2009, 131, 14152–14153.

(34) Fujimoto, K. J. Electronic Coupling Calculations with Transition Charges, Dipoles, and

Quadrupoles Derived from Electrostatic Potential Fitting. J. Chem. Phys. 2014, 141,

214105.

(35) Blasiak, B.; Maj, M.; Cho, M.; G´ora, R. W. Distributed Multipolar Expansion Approach to Calculation of Excitation Energy Transfer Couplings. J. Chem. Theory Comput. 2015, 11, 3259–3266.

(36) Maity, S.; Gelessus, A.; Daskalakis, V.; Kleinekath¨ofer, U. On a ChlorophyllCaroteinoid Coupling in LHCII. Chem. Phys. 2019, 526, 110439.

(37) Kenny, E. P.; Kassal, I. Benchmarking Calculations of Excitonic Couplings between

Bacteriochlorophylls. J. Phys. Chem. B 2016, 120, 25–32.

(38) Adolphs, J.; Renger, T. How Proteins Trigger Excitation Energy Transfer in the FMO

Complex of Green Sulfur Bacteria. Biophys. J. 2006, 91, 2778 – 2797.

(39) Adolphs, J.; M¨

uh, F.; Madjet, M. E.-A.; Busch, M. S. a.; Renger, T. StructureBased Calculations of Optical Spectra of Photosystem I Suggest an Asymmetric LightHarvesting Process. J. Am. Chem. Soc. 2010, 132, 3331–3343.

(40) Renger, T.; M¨

uh, F. Theory of Excitonic Couplings in Dielectric Media. Photosynth.

Res. 2012, 111, 47–52.

(41) M¨

uh, F.; Madjet, M. E.-A.; Renger, T. Structure-Based Identification of Energy Sinks

in Plant Light-Harvesting Complex II. J. Phys. Chem. B 2010, 114, 13517–13535.

(42) M¨

uh, F.; Renger, T. Refined Structure-Based Simulation of Plant Light-Harvesting

Complex II: Linear Optical Spectra of Trimers and Aggregates. Biochim. Biophys. Acta

Bioenerg. 2012, 1817, 1446 – 1460.

40

(43) M¨

uh, F.; Madjet, M. E.-A.; Renger, T. Structure-Based Simulation of Linear Optical

Spectra of the CP43 Core Antenna of Photosystem II. Photosynth. Res. 2012, 111,

87–101.

(44) Shibata, Y.; Nishi, S.; Kawakami, K.; Shen, J.-R.; Renger, T. Photosystem II Does Not

Possess a Simple Excitation Energy Funnel: Time-Resolved Fluorescence Spectroscopy

Meets Theory. J. Am. Chem. Soc. 2013, 135, 6903–6914.

(45) Lindorfer, D.; M¨

uh, F.; Renger, T. Origin of Non-Conservative Circular Dichroism of

the CP29 Antenna Complex of Photosystem II. Phys. Chem. Chem. Phys. 2017, 19,

7524–7536.

(46) Kitoh-Nishioka, H.; Yokogawa, D.; Irle, S. F¨orster Resonance Energy Transfer between Fluorescent Proteins: Efficient Transition Charge-Based Study. J. Phys. Chem.

C 2017, 121, 4220–4238.

(47) Megow, J.; Renger, T.; May, V. Mixed Quantum-Classical Description of Excitation

Energy Transfer in Supramolecular Complexes: Screening of the Excitonic Coupling.

ChemPhysChem 2014, 15, 478–485.

(48) Madjet, M. E.-A.; M¨

uh, F.; Renger, T. Deciphering the Influence of Short-Range Electronic Couplings on Optical Properties of Molecular Dimers: Application to “ Special

Pairs ” in Photosynthesis. J. Phys. Chem. B 2009, 113, 12603–12614.

(49) Yin, S.; Dahlbom, M. G.; Canfield, P. J.; Hush, N. S.; Kobayashi, R.; Reimers, J. R. Assignment of the Qy Absorption Spectrum of Photosystem-I from Thermosynechococcus

elongatus Based on CAM-B3LYP Calculations at the PW91-Optimized Protein Structure. J. Phys. Chem. B 2007, 111, 9923–9930.

(50) Hsu, C.-P.; You, Z.-Q.; Chen, H.-C. Characterization of the Short-Range Couplings in

Excitation Energy Transfer. J. Phys. Chem. C 2008, 112, 1204–1212.

41

(51) Subotnik, J. E.; Cave, R. J.; Steele, R. P.; Shenvi, N. The initial and Final States of

Electron and Energy Transfer Processes: Diabatization as Motivated by System-Solvent

Interactions. J. Chem. Phys. 2009, 130, 234102.

(52) Vura-Weis, J.; Newton, M. D.; Wasielewski, M. R.; Subotnik, J. E. Characterizing

the Locality of Diabatic States for Electronic Excitation Transfer By Decomposing the

Diabatic Coupling. J. Phys. Chem. C 2010, 114, 20449–20460.

(53) Plasser, F.; Lischka, H. Analysis of Excitonic and Charge Transfer Interactions from

Quantum Chemical Calculations. J. Chem. Theory Comput. 2012, 8, 2777–2789.

(54) Jordan, P.; Fromme, P.; Witt, H. T.; Klukas, O.; Saenger, W.; Krauß, N. ThreeDimensional Structure of Cyanobacterial Photosystem I at 2.5 ˚

A Resolution. Nature

2001, 411, 909–917.

(55) Scholes, G. D. Long-Range Resonance Energy Transfer in Molecular Systems. Annu.

Rev. Phys. Chem. 2003, 54, 57–87.

(56) K¨onig, C.; Neugebauer, J. Quantum Chemical Description of Absorption Properties

and Excited-State Processes in Photosynthetic Systems. ChemPhysChem 2012, 13,

386–425.

(57) You, Z.-Q.; Hsu, C.-P. Theory and Calculation for the Electronic Coupling in Excitation

Energy Transfer. Int. J. Quant. Chem. 2014, 114, 102–115.

(58) Cupellini, L.; Corbella, M.; Mennucci, B.; Curutchet, C. Electronic Energy Transfer in

Biomacromolecules. WIREs Comput. Mol. Sci. 2019, 9, e1392.

(59) Knox, R. S.; Spring, B. Q. Dipole Strengths in the Chlorophylls. Photochem. Photobiol.

2003, 77, 497–501.

(60) Renger, T.; Madjet, M. E.; M¨

uh, F.; Trostmann, I.; Schmitt, F.-J.; Theiss, C.;

Paulsen, H.; Eichler, H. J.; Knorr, A.; Renger, G. Thermally Activated Superradi42

ance and Intersystem Crossing in the Water-Soluble Chlorophyll Binding Protein. J.

Phys. Chem. B 2009, 113, 9948–9957.

(61) Becke, A. D. Density-Functional Thermochemistry. III. The Role of Exact Exchange.

J. Chem. Phys. 1993, 98, 5648–5652.

(62) Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the Damping Function in Dispersion

Corrected Density Functional Theory. J. Comput. Chem. 2011, 32, 1456–1465.

(63) Dunning Jr., T. H. Gaussian Basis Sets for Use in Correlated Molecular Calculations. I.

The Atoms Boron through Neon and Hydrogen. J. Chem. Phys. 1989, 90, 1007–1023.

(64) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A. et al. Gaussian

09 Revision E01. Gaussian, Inc.: Wallingford, CT, 2009.

(65) Yanai, T.; Tew, D. P.; Handy, N. C. A New Hybrid Exchange-Correlation Functional

Using the Coulomb-Attenuating Method (CAM-B3LYP). Chem. Phys. Lett. 2004, 393,

51 – 57.

(66) Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.; Gordon, M. S.;

Jensen, J. H.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.; Su, S. et al. General Atomic

and Molecular Electronic Structure System. J. Comput. Chem. 1993, 14, 1347–1363.

(67) Singh, U. C.; Kollman, P. A. An Approach to Computing Electrostatic Charges for

Molecules. J. Comput. Chem. 1984, 5, 129–145.

(68) Case, D. A.; Ben-Shalom, I. Y.; Brozell, S.; Cerutti, D.; Cheatham, III, T.; Cruzeiro, V.

W. D.; Darden, T. A.; Duke, R. E.; Ghoreishi, D.; Gilson, M. K. et al. AMBER2018.

University of California: San Francisco, 2018.

(69) Baker, N. A.; Sept, D.; Joseph, S.; Holst, M. J.; McCammon, J. A. Electrostatics of

43

Nanosystems: Application to Microtubules and the Ribosome. Proc. Natl. Acad. Sci.

USA 2001, 98, 10037–10041.

(70) Morrison, A. F.; You, Z.-Q.; Herbert, J. M. Ab Initio Implementation of the

Frenkel–Davydov Exciton Model: A Naturally Parallelizable Approach to Computing Collective Excitations in Crystals and Aggregates. J. Chem. Theory and Comput.

2014, 10, 5366–5376.

(71) Morrison, A. F.; Herbert, J. M. Low-Scaling Quantum Chemistry Approach to ExcitedState Properties via an ab Initio Exciton Model: Application to Excitation Energy

Transfer in a Self-Assembled Nanotube. J. Phys. Chem. Lett. 2015, 6, 4390–4396.

(72) L¨owdin, P. On the Non‐ Orthogonality Problem Connected with the Use of Atomic

Wave Functions in the Theory of Molecules and Crystals. J. Chem. Phys. 1950, 18,

365–375.

(73) Shao, Y.; Gan, Z.; Epifanovsky, E.; Gilbert, A. T.; Wormit, M.; Kussmann, J.;

Lange, A. W.; Behn, A.; Deng, J.; Feng, X. et al. Advances in Molecular Quantum

Chemistry Contained in the Q-Chem 4 Program Package. Mol. Phys. 2015, 113, 184–

215.

(74) Head-Gordon, M.; Grana, A. M.; Maurice, D.; White, C. A. Analysis of Electronic

Transitions as the Difference of Electron Attachment and Detachment Densities. J.

Phys. Chem. 1995, 99, 14261–14270.

(75) Edmiston, C.; Ruedenberg, K. Localized Atomic and Molecular Orbitals. Rev. Mod.

Phys. 1963, 35, 457–464.

(76) Plasser, F.; Wormit, M.; Dreuw, A. New Tools for the Systematic Analysis and Visualization of Electronic Excitations. I. Formalism. J. Chem. Phys. 2014, 141, 024106.

44

(77) Plasser, F.; B¨appler, S. A.; Wormit, M.; Dreuw, A. New Tools for the Systematic

Analysis and Visualization of Electronic Excitations. II. Applications. J. Chem. Phys.

2014, 141, 024107.

(78) Becke, A. D. Density-Functional Exchange-Energy Approximation with Correct

Asymptotic Behavior. Phys. Rev. A 1988, 38, 3098–3100.

(79) Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti Correlation-Energy

Formula into a Functional of the Electron Density. Phys. Rev. B 1988, 37, 785–789.

(80) Iikura, H.; Tsuneda, T.; Yanai, T.; Hirao, K. A Long-Range Correction Scheme for

Generalized-Gradient-Approximation Exchange Functionals. J. Chem. Phys. 2001,

115, 3540–3544.

(81) Tawada, Y.; Tsuneda, T.; Yanagisawa, S.; Yanai, T.; Hirao, K. A Long-Range-Corrected

Time-Dependent Density Functional Theory. J. Chem. Phys. 2004, 120, 8425–8433.

(82) Hasegawa, J.; Ohkawa, K.; Nakatsuji, H. Excited States of the Photosynthetic Reaction

Center of Rhodopseudomonas viridis: SAC-CI Study. J. Phys. Chem. B 1998, 102,

10410–10419.

(83) Reimers, J. R.; Cai, Z.-L.; Kobayashi, R.; R¨astemp, M.; Freiberg, A.; Krausz, E. Assignment of the Q-Bands of the Chlorophylls: Coherence Loss via Qx - Qy Mixing. Sci.

Rep. 2013, 3, 2761.

(84) Dreuw, A.; Head-Gordon, M. Failure of Time-Dependent Density Functional Theory for

Long-Range Charge-Transfer Excited States: The Zincbacteriochlorin-Bacteriochlorin

and Bacteriochlorophyll-Spheroidene Complexes. J. Am. Chem. Soc. 2004, 126, 4007–

4016.

(85) MacKerell Jr., A. D.; Bashford, D.; Bellott, M.; Dunbrack Jr., R. L.; Evanseck, J. D.;

Field, M. J.; Fischer, S.; Gao, J.; Guo, H.; Ha, S. et al. All-Atom Empirical Potential

45

for Molecular Modeling and Dynamics Studies of Proteins. J. Phys. Chem. B 1998,

102, 3586–3616.

(86) Suomivuori, C.-M.; Fliegl, H.; Starikov, E. B.; Balaban, T. S.; Kaila, V. R. I.; Sundholm, D. Absorption Shifts of Diastereotopically Ligated Chlorophyll Dimers of Photosystem I. Phys. Chem. Chem. Phys. 2019, 21, 6851–6858.

(87) Renger, T.; M¨

uh, F. Understanding Photosynthetic Light-Harvesting: A Bottom up

Theoretical Approach. Phys. Chem. Chem. Phys. 2013, 15, 3348–3371.

(88) Schr¨odinger, LLC, The PyMOL Molecular Graphics System, Version 1.8. 2015.

(89) Wang, X.; Ritschel, G.; W¨

uster, S.; Eisfeld, A. Open Quantum System Parameters

for Light Harvesting Complexes from Molecular Dynamics. Phys. Chem. Chem. Phys.

2015, 17, 25629–25641.

(90) Cupellini, L.; Caprasecca, S.; Guido, C. A.; M¨

uh, F.; Renger, T.; Mennucci, B. Coupling

to Charge Transfer States is the Key to Modulate the Optical Bands for Efficient Light

Harvesting in Purple Bacteria. J. Phys. Chem. Lett. 2018, 9, 6892–6899.

(91) Li, X.; Parrish, R. M.; Liu, F.; Kokkila Schumacher, S. I. L.; Mart´ınez, T. J. An

Ab Initio Exciton Model Including Charge-Transfer Excited States. J. Chem. Theory

Comput. 2017, 13, 3493–3504.

46

Graphical TOC Entry

47

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る