リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「シロイヌナズナの光発芽におけるリボソーム関連遺伝子の発現についての解析」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

シロイヌナズナの光発芽におけるリボソーム関連遺伝子の発現についての解析

赤木, 千佳 京都大学 DOI:10.14989/doctor.k24462

2023.03.23

概要

光は植物にとってエネルギー源になるだけではない。植物は光を環境シグナ
ルとして受容することにより形態形成や光合成を調節している。植物の種子は
土壌中で発芽した後、胚軸を地上へと伸ばす。地表に出た芽生えは、光を受容
すると子葉を展開する。そして、子葉内では光照射による葉緑体の発達が観察
される。この初期の光受容によって遺伝子発現の劇的な変化が起こるが、その
制御機構の詳細については未知な部分が多い。遺伝子発現とは、転写、翻訳を
通して遺伝子産物が役割を果たすまでの過程をいう。近年、網羅的な転写と翻
訳の解析が可能となり、それぞれの遺伝子がコードする mRNA の蓄積量とタン
パク質の翻訳量は必ずしも比例せず、mRNA の蓄積量に依存することなくタン
パク質の生産量が増減していることが明らかとなった。先行研究では、暗所に
て発芽したシロイヌナズナ芽生えに植物の生長に関わる主要な光波長である青
色光を 1 時間照射した場合の核遺伝子の転写産物量と翻訳量の初期変化につい
て報告されている。その結果、青色光を照射することによって葉緑体形成に関
わる遺伝子群や microRNA 生合成遺伝子群が翻訳レベルで発現上昇しているこ
とが示唆された。つまり、青色光受容時の遺伝子発現の制御は、転写レベルだ
けではなく翻訳レベルでもなされているといえる。しかしながら、その翻訳レ
ベルの発現変動がどのように制御されているのかは明らかではない。 ...

この論文で使われている画像

参考文献

Abidi F, Girault T, Douillet O, Guillemain G, Sintes G, Laffaire M, Ahmed HB, Smiti S,

Huché-Thélier L, Leduc N (2013). Blue light effects on rose photosynthesis and

photomorphogenesis. Plant Biol 15: 67–74. doi: 10.1111/j.1438-8677.2012.00603.x.

Ahmad M, Jarillo JA, Cashmore AR (1998). Chimeric proteins between cry1 and cry2

Arabidopsis blue light photoreceptors indicate overlapping functions and varying

protein stability. Plant Cell 10: 197–207. doi: 10.1105/tpc.10.2.197

Anders S, Huber W (2010) Differential expression analysis for sequence count data.

Genome Biol R106 11: R106. doi: 10.1186/gb-2010-11-10-r106.

Beligni MV, Lamattina L (2000) Nitric oxide stimulates seed germination and deetiolation, and inhibits hypocotyl elongation, three light-inducible responses in plants.

Planta 210: 215–221. doi: 10.1007/PL00008128

Boex-Fontvieille E, Davanture M, Jossier M, Zivy M, Hodges M, Tcherkez G (2014)

Photosynthetic activity influences cellulose biosynthesis and phosphorylation of

proteins involved therein in Arabidopsis leaves. J Exp Bot 65: 4997–5010. doi:

10.1093/jxb/eru268.

Buet A, Galatro A, Ramos-Artuso F, Simontacchi M (2019) Nitric oxide and plant mineral

nutrition: Current knowledge. J Exp Bot 70: 4461–4476. doi: 10.1093/jxb/erz129

Calderon RH, Strand Å. (2021) How retrograde signaling is intertwined with the

evolution of photosynthetic eukaryotes. Curr Opin Plant Biol 63: 102093. doi:

10.1016/j.pbi.2021.102093

Calviello L, Mukherjee N, Wyler E, Zauber H, Hirsekorn A, Selbach M, Landthaler M,

Obermayer B, Ohler U (2016) Detecting actively translated open reading frames in

ribosome profiling data. Nat Methods 13: 165–170. doi: 10.1038/nmeth.3688.

115

Cashmore AR, Jarillo J A, Wu Y J, Liu D (1999) Cryptochromes: blue light receptors for

plants and animals. Science 284: 760–765. doi: 10.1126/science.284.5415.760

Chen G, Liu M, Xiong Y, Sheen J, Wu S (2018) TOR and RPS6 transmit light signals to

enhance protein translation in deetiolating Arabidopsis seedlings. PNAS 115: 1282312828. doi: 10.1073/pnas.1809526115

Chotewutmontri P, Barkan A (2018) Multilevel effects of light on ribosome dynamics in

chloroplasts program genome-wide and psbA-specific changes in translation. PLoS

Genet 14: e1007555. doi: 10.1371/journal.pgen.1007555

Dhami N, Pogson BJ, Tissue DT, Cazzonelli CI (2022) A foliar pigment-based bioassay

for interrogating chloroplast signalling revealed that carotenoid isomerisation regulates

chlorophyll abundance. Plant Methods 18: 18. doi: 10.1186/s13007-022-00847-5

Dobin A, Davis C A, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M,

Gingeras TR (2013) STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 29:

15–21. doi: 10.1093/bioinformatics/bts635

Facella P, Carbone F, Placido A, Perrotta G (2017) Cryptochrome 2 extensively regulates

transcription of the chloroplast genome in tomato. FEBS Open Bio,7: 456–471. doi:

10.1002/2211-5463.12082

Franklin K. A, Quail PH (2010) Phytochrome functions in Arabidopsis development. J

Exp Bot 61: 11–24. doi: 10.1093/jxb/erp304

Fukazawa H, Tada A, Richardson LGL, Kakizaki T, Uehara S, Ito-Inaba Y, Inaba T (2020)

Induction of TOC and TIC genes during photomorphogenesis is mediated primarily by

cryptochrome 1 in Arabidopsis. Sci Rep 10: 20225. doi: 10.1038/s41598-020-76939w

Gammie SC, Olaghere-da SUB, Nelson RJ (2000) 3-Bromo-7-nitroindazole, a neuronal

116

nitric oxide synthase inhibitor, impairs maternal aggression and citrulline

immunoreactivity in prairie voles. Brain Res 870: 80-86. doi: 10.1016/s00068993(00)02404-5

Griffin JHC, Toledo-Ortiz G (2022) Plant photoreceptors and their signalling components

in

chloroplastic

anterograde

and

retrograde.

Exp

Bot

erac220.

doi:

10.1093/jxb/erac220

Guo J, Wang S, Valerius O, Hall H, Zeng Q, Li JF, Weston DJ, Ellis BE, Chen JG (2011)

Involvement of Arabidopsis RACK1 in protein translation and its regulation by

abscisic acid. Plant Physiology, 155: 370–383. doi: 10.1104/pp.110.160663

Henry J, Griffin C, Prado K, Sutton P, Toledo-Ortiz G (2020). Coordinating light

responses between the nucleus and the chloroplast, a role for plant cryptochromes and

phytochromes. Physiol Plant 169: 515–528. doi: 10.1111/ppl.13148

Hernández-Verdeja T, Vuorijoki L, Strand Å (2020) Emerging from the darkness:

interplay between light and plastid signaling during chloroplast biogenesis. Physiol

Plant 169: 397–406. doi: 10.1111/ppl.13100

Inaba T (2010) Bilateral Communication between plastid and the nucleus: plastid protein

import and plastid-to-nucleus retrograde signaling. Biosci Biotechnol Biochem 74:

471-476. doi: 10.1271/bbb.90842

Ingolia N T, Hussmann JA, Weissman JS (2019) Ribosome profiling: Global views of

translation. Cold Spring Harb Perspect Biol 11: a032698. doi:

10.1101/cshperspect.a032698

Kami C, Lorrain S, Hornitschek P, Fankhauser C (2010) Light-regulated plant growth and

development. Curr Top Dev Biol 91: 29–66. doi: 10.1016/S0070-2153(10)91002-8

Kurihara Y, Makita Y, Shimohira H, Matsui M (2020) Time-course transcriptome study

117

reveals mode of bZIP transcription factors on light exposure in Arabidopsis. Int J Mol

Sci 21 :1993. doi: 10.3390/ijms21061993

Kurihara Y, Makita Y, Kawashima M, Fujita T, Iwasaki S, Matsui M (2018) Transcripts

from downstream alternative transcription start sites evade uORF-mediated inhibition

of gene expression in Arabidopsis. Proc Natl Acad Sci U S A 115: 7831–7836. doi:

10.1073/pnas.1804971115

Kurihara Y, Makita Y, Shimohira H, Fujita T, Iwasaki S, Matsui M (2020) Translational

landscape of protein-coding and non-protein-coding RNAs upon light exposure in

Arabidopsis. Plant Cell Physiol 61: 536–545. doi: 10.1093/pcp/pcz219

Li C, Wang, X, Zhang L, Zhang C, Yu C, Zhao T, Liu B, Li H, Liu J (2022) OsBIC1

directly interacts with OsCRYs to regulate leaf sheath length through mediating GAresponsive pathway. International J Mol Sci 23: 287. doi: 10.3390/ijms23010287

Lian H, Xu P, He S, Wu J, Pan J, Wang W, Xu F, Wang S, Pan J, Huang J, Yang HQ (2018)

Photoexcited CRYPTOCHROME 1 Interacts Directly with G-Protein β Subunit AGB1

to Regulate the DNA-Binding Activity of HY5 and Photomorphogenesis in

Arabidopsis. Mol Plant 11: 1248–1263. doi: 10.1016/j.molp.2018.08.004

Mao Z, He S, Xu F, Wei X, Jiang L, Liu Y, Wang W, Li T, Xu P, Du S, Li L, Lian H, Guo

T, Yang HQ (2020) Photoexcited CRY1 and phyB interact directly with ARF6 and

ARF8 to regulate their DNA-binding activity and auxin-induced hypocotyl elongation

in Arabidopsis. New Phytol 225: 848–865. doi: 10.1111/nph.16194

McGlincy NJ, Ingolia NT (2017) Transcriptome-wide measurement of translation by

ribosome profiling. Methods, 126: 112–129. doi: 10.1016/j.ymeth.2017.05.028

McNellis TW, Deng XW (1995) Light control of seedling morphogenetic pattern. Plant

Cell 7: 1749–1761. doi: 10.1105/tpc.7.11.1749

118

Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with

tobacco tissue cultures. Physiol Plant 15: 473–497. doi: 10.1111/j.13993054.1962.tb08052.x

Nelson N, Yocum CF (2006) Structure and function of photosystems I and II. Annu Rev

Plant Biol 57: 521–565. doi: 10.1146/annurev.arplant.57.032905.105350

Nevins DJ, Huber DJ, Yamamoto R, Loescher WH (1977) beta-d-Glucan of Avena

Coleoptile Cell Walls. Plant Physiol, 60: 617–621. doi: 10.1104/pp.60.4.617

Ong W-D, Okubo-Kurihara E, Kurihara Y, Shimada S, Makita Y, Kawashima M, Honda

K, Kondoh, Y, Watanabe N, Osada H, Cutler S R, Sudesh K, Matsui M (2017)

Chemical-induced inhibition of blue light-mediated seedling development caused by

disruption of upstream signal transduction involving cryptochromes in Arabidopsis

thaliana. Plant Cell Physiol 58: 95–105. doi: 10.1093/pcp/pcw181

Orth C, Niemann N, Hennig L, Essen LO, Batschauer A (2017) Hyperactivity of the

Arabidopsis cryptochrome (cry1) L407F mutant is caused by a structural alteration

close to the cry1 ATP-binding site. J Biol Chemi 292: 12906–12920. doi:

10.1074/jbc.M117.788869

Oyama T, Shimura Y, Okada K (1997) The Arabidopsis HY5 gene encodes a bZIP protein

that regulates stimulus-induced development of root and hypocotyl. Genes Dev 11:

2983–2995. doi: 10.1101/gad.11.22.2983

Paik I, Huq E (2019) Plant photoreceptors: Multi-functional sensory proteins and their

signaling

networks.

Semin

Cell

Dev

Biol

92:

114–121.

doi:

10.1016/j.semcdb.2019.03.007

Park JH, Tran LH, Jung S (2017) Perturbations in the photosynthetic pigment status result

in photooxidation-induced crosstalk between carotenoid and porphyrin biosynthetic

119

pathways. Front Plant Sci 8:1992. doi: 10.3389/fpls.2017.01992.

Petrillo E, Godoy Herz MA, Fuchs A, Reifer D, Fuller J, Yanovsky MJ, Simpson C,

Brown J WS, Barta A, Kalyna M, Kornblihtt AR (2014) A chloroplast retrograde signal

regulates

nuclear

alternative

splicing.

Science,

344:

427–430.

doi:

10.1126/science.1250322

Ponnu J, Hoecker U (2022) Signaling mechanisms by Arabidopsis cryptochromes. Front

Plant Sci 13: 844714. doi: 10.3389/fpls.2022.844714

Reiß T, Bergfeld R, Link G, Thien W, Mohr H (1983) Photooxidative destruction of

chloroplasts and its consequences for cytosolic enzyme levels and plant development.

Planta 159: 518–528. doi: 10.1007/BF00409141

Richardson LGL, Singhal R, Schnell DJ (2017) The integration of chloroplast protein

targeting with plant developmental and stress responses. BMC Biol 15: 118. doi:

10.1186/s12915-017-0458-3

Rochaix JD, Ramundo S (2018) Chloroplast signaling and quality control. Essays

Biochem 62: 13–20. doi: 10.1042/EBC20170048

Sang Y, Li QH, Rubio V, Zhang YC, Mao J, Deng XW, Yang HQ (2005) N-terminal

domain-mediated homodimerization is required for photoreceptor activity of

Arabidopsis Cryptochrome 1. Plant Cell 17: 1569–1584. doi: 10.1105/tpc.104.029645

Shimizu T, Kacprzak SM, Mochizuki N, Nagatani A, Watanabe S, Shimada T, Tanaka K,

Hayashi Y, Arai M, Leister D, Okamoto H, Terry MJ, Masuda T (2019) The retrograde

signaling protein GUN1 regulates tetrapyrrole biosynthesis. Proc Natl Acad Sci USA

116: 24900–24906. doi: 10.1073/pnas.1911251116

Singh A, Ram H, Abbas N, Chattopadhyay S (2012) Molecular interactions of GBF1 with

HY5 and HYH proteins during light-mediated seedling development in Arabidopsis

120

thaliana. J Biol Chem 287: 25995–26009. doi: 10.1074/jbc.M111.333906

Solymosi K, Schoef B (2010) Etioplast and etio-chloroplast formation under natural

conditions: the dark side of chlorophyll biosynthesis in angiosperms. Photosynth Res

105: 143–166. doi: 10.1007/s11120-010-9568-2

Szczepaniak M, Sander J, Nowaczyk M, Müller M G, Rögner M, Holzwarth A R (2009)

Charge separation, stabilization, and protein relaxation in photosystem II core particles

with closed reaction center. Biophys J 96: 621–631. doi: 10.1016/j.bpj.2008.09.036

Tissot N, Ulm R (2020) Cryptochrome-mediated blue-light signalling modulates UVR8

photoreceptor activity and contributes to UV-B tolerance in Arabidopsis. Nat Commun

11: 13223. doi: 10.1038/s41467-020-15133-y

Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL,

Rinn J L, Pachter L (2012) Differential gene and transcript expression analysis of RNAseq experiments with TopHat and Cufflinks. Nat Protoc 7: 562–578. doi:

10.1038/nprot.2012.016

Vinti G, Fourrier N, Bowyer JR, López-Juez E (2005) Arabidopsis cue mutants with

defective plastids are impaired primarily in the photocontrol of expression of

photosynthesis-associated nuclear genes. Plant Mol Biol 57: 343–357. doi:

10.1007/s11103-004-7867-8

Wang, L, Huang X, Li K, Song S, Jing Y, Lu S (2021) Screening and identification of

candidate GUN1-interacting proteins in Arabidopsis thaliana. Int J Mol Sci 22: 11364.

doi: 10.3390/ijms222111364

Wang ZY, Kenigsbuch D, Sun L, Hare E., Ong MS, Tobin EM (1997). A Myb-related

transcription factor is involved in the phytochrome regulation of an Arabidopsis Lhcb

gene. Plant Cell 9: 491-507. doi: 10.1105/tpc.9.4.491

121

Woodson JD, Chory, J (2008) Coordination of gene expression between organellar and

nuclear genomes. Nat Rev Genet 9: 383–395. doi: 10.1038/nrg2348

Xiao Y, Chu L, Zhang Y, Bian Y, Xiao J, Xu D (2022) HY5: A pivotal regulator of lightdependent development in higher plants. Front Plant Sci 12: 800989. doi:

10.3389/fpls.2021.800989

Yamori W, Shikanai T (2016) Physiological functions of cyclic electron transport around

photosystem I in sustaining photosynthesis and plant growth. Annu Rev Plant Biol 67:

81–106. doi: 10.1146/annurev-arplant-043015-112002

Yu X, Liu H, Klejnot J, Lin C (2010) The cryptochrome blue light receptors. Arabidopsis

Book 8: e0135. doi: 10.1199/tab.0135

Zhang Y, Zhang A, Li X, Lu C (2020) The role of chloroplast gene expression in plant

responses to environmental stress. Int J Mol Sci 21: 6082. doi: 10.3390/ijms21176082

122

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る