リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Antiviral Face Mask Functionalized with Solidified Hand Soap: Low-Cost Infection Prevention Clothing against Enveloped Viruses Such as SARS-CoV-2」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Antiviral Face Mask Functionalized with Solidified Hand Soap: Low-Cost Infection Prevention Clothing against Enveloped Viruses Such as SARS-CoV-2

Cano-Vicent, Alba Tuñón-Molina, Alberto Martí, Miguel Muramoto, Yukiko Noda, Takeshi Takayama, Kazuo Serrano-Aroca, Ángel 京都大学 DOI:10.1021/acsomega.1c03511

2021.09.14

概要

Infection prevention clothing is becoming an essential protective tool in the current pandemic, especially because now we know that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can easily infect humans in poorly ventilated indoor spaces. However, commercial infection prevention clothing is made of fabrics that are not capable of inactivating the virus. Therefore, viral infections of symptomatic and asymptomatic individuals wearing protective clothing such as masks can occur through aerosol transmission or by contact with the contaminated surfaces of the masks, which are suspected as an increasing source of highly infectious biological waste. Herein, we report an easy fabrication method of a novel antiviral non-woven fabric containing polymer filaments that were coated with solidified hand soap. This extra protective fabric is capable of inactivating enveloped viruses such as SARS-CoV-2 and phage Φ6 within 1 min of contact. In this study, this antiviral fabric was used to fabricate an antiviral face mask and did not show any cytotoxic effect in human keratinocyte HaCaT cells. Furthermore, this antiviral non-woven fabric could be used for the fabrication of other infection prevention clothing such as caps, scrubs, shirts, trousers, disposable gowns, overalls, hoods, aprons, and shoe covers. Therefore, this low-cost technology could provide a wide range of infection-protective tools to combat COVID-19 and future pandemics in developed and underdeveloped countries.

この論文で使われている画像

参考文献

(1) WHO Director-General’s opening remarks at the media briefing on COVID-19—11 March 2020. https://www.who.int/dg/speeches/ detail/who-director-general-s-opening-remarks-at-the-media-briefing- on-covid-19 11-march-2020 (accessed 2021-08-10).

(2) Hassan, S. S.; Attrish, D.; Ghosh, S.; Choudhury, P. P.; Uversky, V. N.; Aljabali, A. A. A.; Lundstrom, K.; Uhal, B. D.; Rezaei, N.; Seyran, M.; Pizzol, D.; Adadi, P.; Soares, A.; Abd El-Aziz, T. M.; Kandimalla, R.; Tambuwala, M. M.; Azad, G. K.; Sherchan, S. P.; Baetas-da-Cruz, W.; Lal, A.; Palu,̀G.; Takayama, K.; Serrano-Aroca, Á.; Barh, D.; Brufsky, A. M. Notable Sequence Homology of the ORF10 Protein Introspects the Architecture of SARS-CoV-2. Int. J. Biol. Macromol. 2021, 181, 801−809.

(3) Hassan, S. S.; Ghosh, S.; Attrish, D.; Choudhury, P. P.; Aljabali, A. A. A.; Uhal, B. D.; Lundstrom, K.; Rezaei, N.; Uversky, V. N.; Seyran, M.; Pizzol, D.; Adadi, P.; Soares, A.; El-Aziz, T. M. A.; Kandimalla, R.; Tambuwala, M. M.; Azad, G. K.; Sherchan, S. P.; Baetas-da-Cruz, W.; Takayama, K.; Serrano-Aroca, Á.; Chauhan, G.; Palu, G.; Brufsky, A. M. Possible Transmission Flow of SARS-CoV-2 Based on ACE2 Features. Molecules 2020, 25, 5906.

(4) Barh, D.; Aljabali, A. A. A.; Tiwari, S.; Tambuwala, M. M. Predicting COVID-19—Comorbidity Pathway Crosstalk-Based Tar- gets and Drugs: Towards Personalized COVID-19 Management. Biomedicines 2021, 9, 556.

(5) Hassan, S. S.; Aljabali, A. A. A.; Panda, P. K.; Ghosh, S.; Attrish, D.; Choudhury, P. P.; Seyran, M.; Pizzol, D.; Adadi, P.; Abd El-Aziz, T. M.; Soares, A.; Kandimalla, R.; Lundstrom, K.; Lal, A.; Azad, G. K.; Uversky, V. N.; Sherchan, S. P.; Baetas-da-Cruz, W.; Uhal, B. D.; Rezaei, N.; Chauhan, G.; Barh, D.; Redwan, E. M.; Dayhoff, G. W.; Bazan, N. G.; Serrano-Aroca, Á.; El-Demerdash, A.; Mishra, Y. K.; Palu, G.; Takayama, K.; Brufsky, A. M.; Tambuwala, M. M. A Unique View of SARS-COV-2 through the Lens of ORF8 Protein. Comput. Biol. Med. 2021, 133, 104380.

(6) Wu, Y.; Guo, C.; Tang, L.; Hong, Z.; Zhou, J.; Dong, X.; Yin, H.; Xiao, Q.; Tang, Y.; Qu, X.; Kuang, L.; Fang, X.; Mishra, N.; Lu, J.; Shan, H.; Jiang, G.; Huang, X. Prolonged Presence of SARS-CoV-2 Viral RNA in Faecal Samples. Lancet Gastroenterol. Hepatol. 2020, 5, 434−435.

(7) Seyran, M.; Takayama, K.; Uversky, V. N.; Lundstrom, K.; Palu,̀ G.; Sherchan, S. P.; Attrish, D.; Rezaei, N.; Aljabali, A. A. A.; Ghosh, S.; Pizzol, D.; Chauhan, G.; Adadi, P.; Mohamed Abd El-Aziz, T.; Soares, A. G.; Kandimalla, R.; Tambuwala, M.; Hassan, S. S.; Azad, G. K.; Pal Choudhury, P.; Baetas-da-Cruz, W.; Serrano-Aroca, Á.; Brufsky, A. M.; Uhal, B. D. The Structural Basis of Accelerated Host Cell Entry by SARS-CoV-2. FEBS J. 2020, DOI: 10.1111/febs.15651.

(8) Baltimore, D. Expression of Animal Virus Genomes. Bacteriol. Rev. 1971, 35, 235−241.

(9) Briz-Redón, Á.; Serrano-Aroca, Á. The Effect of Climate on the Spread of the COVID-19 Pandemic: A Review of Findings, andStatistical and Modelling Techniques. Prog. Phys. Geogr. Earth Environ.2020, 44, 591.

(10) Briz-Redón, Á.; Serrano-Aroca, Á. A Spatio-Temporal Analysis for Exploring the Effect of Temperature on COVID-19 Early Evolution in Spain. Sci. Total Environ. 2020, 728, 138811.

(11) Bourouiba, L. Turbulent Gas Clouds and Respiratory Pathogen Emissions Potential Implications for Reducing Transmission of COVID-19. J. Am. Med. Assoc. 2020, 323, 1837−1838.

(12) Orenes-Piñero, E.; Baño, F.; Navas-Carrillo, D.; Moreno-Docón, A.; Marín, J. M.; Misiego, R.; Ramírez, P. Evidences of SARS- CoV-2 Virus Air Transmission Indoors Using Several Untouched Surfaces: A Pilot Study. Sci. Total Environ. 2021, 751, 142317.

(13) van Doremalen, N.; Bushmaker, T.; Morris, D. H.; Holbrook, M. G.; Gamble, A.; Williamson, B. N.; Tamin, A.; Harcourt, J. L.; Thornburg, N. J.; Gerber, S. I.; Lloyd-Smith, J. O.; de Wit, E.; Munster, V. J. Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1. N. Engl. J. Med. 2020, 382, 1564.

(14) Ong, S. W. X.; Tan, Y. K.; Chia, P. Y.; Lee, T. H.; Ng, O. T.; Wong, M. S. Y.; Marimuthu, K. Air, Surface Environmental, and Personal Protective Equipment Contamination by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) from a Symptomatic Patient. J. Am. Med. Assoc. 2020, 323, 1610−1612.

(15) Chin, A. W. H.; Chu, J. T. S.; Perera, M. R. A.; Hui, K. P. Y.; Yen, H.-L.; Chan, M. C. W.; Peiris, M.; Poon, L. L. M. Stability of SARS-CoV-2 in Different Environmental Conditions. Lancet Microbe 2020, 1, No. e10.

(16) Liu, Y.; Ning, Z.; Chen, Y.; Guo, M.; Liu, Y.; Gali, N. K.; Sun, L.; Duan, Y.; Cai, J.; Westerdahl, D.; Liu, X.; Xu, K.; Ho, K.-f.; Kan, H.; Fu, Q.; Lan, K. Aerodynamic Analysis of SARS-CoV-2 in Two Wuhan Hospitals. Nature 2020, 582, 557−560.

(17) Richard, M.; Kok, A.; de Meulder, D.; Bestebroer, T. M.; Lamers, M. M.; Okba, N. M. A.; Fentener van Vlissingen, M.; Rockx, B.; Haagmans, B. L.; Koopmans, M. P. G.; Fouchier, R. A. M.; Herfst, S. SARS-CoV-2 Is Transmitted via Contact and via the Air between Ferrets. Nat. Commun. 2020, 11, 3496.

(18) Morawska, L.; Cao, J. Airborne Transmission of SARS-CoV-2: The World Should Face the Reality. Environ. Int. 2020, 139, 105730.

(19) Matuschek, C.; Moll, F.; Fangerau, H.; Fischer, J. C.; Zänker, K.; Van Griensven, M.; Schneider, M.; Kindgen-Milles, D.; Knoefel, W. T.; Lichtenberg, A.; Tamaskovics, B.; Djiepmo-Njanang, F. J.; Budach, W.; Corradini, S.; Häussinger, D.; Feldt, T.; Jensen, B.; Pelka, R.; Orth, K.; Peiper, M.; Grebe, O.; Maas, K.; Gerber, P. A.; Pedoto, A.; Bölke, E.; Haussmann, J. Face Masks: Benefits and Risks during the COVID-19 Crisis. Eur. J. Med.Res. 2020, 25, 32.

(20) Howard, J.; Huang, A.; Li, Z.; Tufekci, Z.; Zdimal, V.; van der Westhuizen, H.-M.; von Delft, A.; Price, A.; Fridman, L.; Tang, L.-H.; Tang, V.; Watson, G. L.; Bax, C. E.; Shaikh, R.; Questier, F.; Hernandez, D.; Chu, L. F.; Ramirez, C. M.; Rimoin, A. W. An Evidence Review of Face Masks against COVID-19. Proc. Natl. Acad. Sci. U.S.A.. 2021, 118, e2014564118. DOI: DOI: 10.1073/ pnas.2014564118.

(21) Mitze, T.; Kosfeld, R.; Rode, J.; Wälde, K. Face Masks Considerably Reduce COVID-19 Cases in Germany. Proc. Natl. Acad. Sci. U.S.A. 2020, 117, 32293−32301.

(22) Melayil, K. R.; Mitra, S. K. Wetting, Adhesion, and Droplet Impact on Face Masks. Langmuir 2021, 37, 2810−2815.

(23) Serrano-Aroca, Á.; Takayama, K.; Tuñón-Molina, A.; Seyran, M.; Hassan, S. S.; Pal Choudhury, P.; Uversky, V. N.; Lundstrom, K.; Adadi, P.; Palu,̀G.; Aljabali, A. A. A.; Chauhan, G.; Kandimalla, R.; Tambuwala, M. M.; Lal, A.; Abd El-Aziz, T. M.; Sherchan, S.; Barh, D.; Redwan, E. M.; Bazan, N. G.; Mishra, Y. K.; Uhal, B. D.; Brufsky, A. Carbon-Based Nanomaterials: Promising Antiviral Agents to Combat COVID-19 in the Microbial-Resistant Era. ACS Nano 2021, 15, 8069−8086.

(24) Sun, D.; Babar Shahzad, M.; Li, M.; Wang, G.; Xu, D. Antimicrobial Materials with Medical Applications. Mater. Technol. 2015, 30, B90−B95.

(25) Palza, H. Antimicrobial Polymers with Metal Nanoparticles. Int. J. Mol. Sci. 2015, 16, 2099−2116.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る