リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Photo-On-Demand Synthesis of α-Amino Acid N-Carboxyanhydrides with Chloroform」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Photo-On-Demand Synthesis of α-Amino Acid N-Carboxyanhydrides with Chloroform

Sugimoto, Toshiyuki Kuwahara, Tomoya Liang, Fengying Wang, Huirong Tsuda, Akihiko 神戸大学

2022.10.19

概要

Amino acid N-carboxyanhydrides (NCAs) are conventionally synthesized from α-amino acids and phosgene. The present study reports in situ photo-on-demand phosgenation reactions of amino acids with CHCl3 for synthesizing NCAs. A series of NCAs were obtained on a gram scale upon photo-irradiation of a mixture solution of CHCl3 and CH3CN containing an amino acid at 60–70 °C under O2 bubbling. This method presents a safe and convenient reaction controlled by light without special apparatuses and reagents.

この論文で使われている画像

参考文献

(1) (a) Leuchs, H. Ueber die Glycin-carbonsaure. Ber. Dtsch. Chem. Ges. 1906, 39, 857−861. (b) Leuchs, H.; Manasse, W. Über die Isomerie der Carbäthoxyl-glycyl glycinester. Ber. Dtsch. Chem. Ges. 1907, 40, 3235−3249. (c) Leuchs, H.; Geiger, W. Über die Anhydride von α-Amino-N-carbonsäuren und die von α-Aminosäuren. Ber. Dtsch. Chem. Ges. 1908, 41, 1721−1726.

(2) (a) Hadjichristidis, N.; Iatrou, H.; Pitsikalis, M.; Sakellariou, G. Synthesis of Well-Defined Polypeptide-Based Materials via the Ring- Opening Polymerization of α-Amino Acid N-Carboxyanhydrides. Chem. Rev. 2009, 109, 5528−5578. (b) González-Henríquez, C. M.; Sarabia-Vallejos, M. A.; Rodríguez-Hernández, J. Strategies to Fabricate Polypeptide-Based Structures via Ring-Opening Polymer- ization of N-Carboxyanhydrides. Polymers 2017, 9, 551−613. (c) Deming, T. J. Synthesis of Side-Chain Modified Polypeptides. Chem. Rev. 2016, 116, 786−808.

(3) (a) Deming, T. J. Methodologies for Preparation of Synthetic Block Copolypeptides: Materials with Future Promise in Drug Delivery. Adv. Drug Delivery Rev. 2002, 54, 1145−1155. (b) Deming, T. J. Synthetic Polypeptides for Biomedical Applications. Prog. Polym. Sci. 2007, 32, 858−875.

(4) (a) Fuchs, F. Über N -Carbonsaure-anhydride. Ber. Dtsch. Chem. Ges. B 1922, 55, 2943. (b) Farthing, A. C. Synthetic Polypeptides. Part I. Synthesis of Oxazolid-2:5-Diones and a New Reaction of Glycine. J. Chem. Soc. 1950, 3213−3217. (c) Farthing, A. C.; Reynolds, R. J. W. Anhydro-N-Carboxy-dl-β-Phenylalanine. Nature 1950, 165, 647. (d) Gerlach, A.; Geller, T. Scale-Up Studies for the Asymmetric Julia−́ Colonna Epoxidation Reaction. Adv. Synth. Catal. 2004, 346, 1247−1249.

(5) (a) Babad, H.; Zeiler, A. G. The Chemistry of Phosgene. Chem. Rev. 1973, 73, 75−91. (b) Cotarca, L.; Eckert, H. Phosgenations-A Handbook; Wiley-VCH: Weinheim, 2003.

(6) (a) Eckert, H.; Forster, B. Triphosgene, a Crystalline Phosgene Substitute. Angew. Chem., Int. Ed. Engl. 1987, 26, 894−895. (b) Ganiu, M. O.; Nepal, B.; Van Houten, J. P.; Kartika, R. A Decade Review of Triphosgene and Its Applications in Organic Reactions. Tetrahedron 2020, 76, 131553−131576.

(7) (a) Daly, W. H.; Poché, D. The Preparation of N- Carboxyanhydrides of α-Amino Acids using Bis(trichloromethyl)- carbonate. Tetrahedron Lett. 1988, 29, 5859−5862. (b) Smeets, N. M. B.; van der Weide, P. L. J.; Meuldijk, J.; Vekemans, J. A. J. M.; Hulshof, L. A. A Scalable Synthesis of L-Leucine-N-carboxyanhydride. Org. Process Res. Dev. 2005, 9, 757−763.

(8) Tian, Z.-Y.; Zhang, Z.; Wang, S.; Lu, H. A Moisture-Tolerant Route to Unprotected α/β-Amino Acid N-Carboxyanhydrides and Facile Synthesis of Hyperbranched Polypeptides. Nat. Commun. 2021, 12, 5810.

(9) (a) Yasukouchi, H.; Nishiyama, A.; Mitsuda, M. Safe and Efficient Phosgenation Reactions in a Continuous Flow Reactor. Org. Process Res. Dev. 2018, 22, 247−251. (b) Otake, Y.; Nakamura, H.; Fuse, S. Rapid and Mild Synthesis of Amino Acid N-Carboxy Anhydrides: Basic-to-Acidic Flash Switching in a Microflow Reactor. Angew. Chem., Int. Ed. 2018, 57, 11389−11393.

(10) Cotarca, L.; Geller, T.; Répási, J. Bis(trichloromethyl)carbonate (BTC, Triphosgene): A Safer Alternative to Phosgene? Org. Process Res. Dev. 2017, 21, 1439.

(11) (a) Collet, H.; Bied, C.; Mion, L.; Taillades, J.; Commeyras, A. A New Simple and Quantitative Synthesis of α-Aminoacid-N- Carboxyanhydrides (Oxazolidines-2,5-Dione). Tetrahedron Lett. 1996, 37, 9043−9046. (b) Mobashery, S.; Johnston, M. A. New Approach to the Preparation of N-Carboxy .alpha.-Amino Acid Anhydrides. J. Org. Chem. 1985, 50, 2200−2202.

(12) Kudo, H.; Nagai, A.; Ishikawa, J.; Endo, T. Synthesis and Self- Polyaddition of Optically Active Monomers Derived from Tyrosine. Macromolecules 2001, 34, 5355−5357.

(13) Enomoto, H.; Nottelet, B.; Halifa, S. A.; Enjalbal, C.; Dupré, M.; Tailhades, J.; Coudane, J.; Subra, G.; Martinez, J.; Amblard, M. Synthesis of Peptide-Grafted Comb Polypeptides via Polymerisation of NCA-Peptides. Chem. Commun. 2013, 49, 409−411.

(14) (a) Fujita, Y.; Koga, K.; Kim, H.-K.; Wang, X.-S.; Sudo, A.; Nishida, H.; Endo, T. Phosgene-Free Synthesis of N-Carboxyanhy- drides of α-Amino Acids Based on Bisarylcarbonates as Starting Compounds. J. Polym. Sci., Part A: Polym. Chem. 2007, 45, 5365− 5370. (b) Koga, K.; Sudo, A.; Endo, T. Revolutionary Phosgene-Free Synthesis of α-Amino Acid N-Carboxyanhydrides Using Diphenyl Carbonate Based on Activation of α-Amino Acids by Converting into Imidazolium Salts. J. Polym. Sci., Part A: Polym. Chem. 2010, 48, 4351−4355.

(15) Laconde, G.; Amblard, M.; Martinez, J. Synthesis of α-Amino Acid N-Carboxyanhydrides. Org. Lett. 2021, 23, 6412−6416.

(16) Tsuda, A. Method for Producing Amino Acid-N-Carboxylic Acid Anhydride. JP 2020083882 A, 2020.

(17) (a) Tsuda, A. A Reaction Mixture Obtained by Photo- irradiation of Halogenated Hydrocarbon and Its Use as a Source of Halogen or Carbonyl Halide. JP 2013181028 A, 2013; JP 5900920 B2, 2016. (b) Kuwahara, Y.; Zhang, A. L.; Soma, H.; Tsuda, A. Photochemical Molecular Storage of Cl2, HCl, and COCl2: Synthesis of Organochlorine Compounds, Salts, Ureas, and Polycarbonate with Photodecomposed Chloroform. Org. Lett. 2012, 14, 3376−3379.

(18) (a) Tsuda, A. Preparation of Halogenated Carboxylate Esters by Irradiating Light to Halocarbons and Alcohols in the Presence of Oxygen. JP WO2015/156245 A1, 2015; JP 6057449 B2, 2016. (b) Liang, F.; Yanai, M.; Suzuki, Y.; Tsuda, A. Photo-on-Demand Synthesis of Chloroformates with a Chloroform Solution Containing an Alcohol and Its One-Pot Conversion to Carbonates and Carbamates. Org. Lett. 2020, 22, 3566−3569. Asymmetric Julia−Colonna Epoxidation Reaction. Adv. Synth. Catal. 2004, 346, 1247−1249.

(19) (a) Tsuda, A.; Okazoe, T.; Wada, A.; Mori, N.; Konishi, K. Method for Preparing Vilsmeier Reagent. WO 2020050368 A1, 2020. (b) Liang, F.; Eda, K.; Okazoe, T.; Wada, A.; Mori, N.; Konishi, K.; Tsuda, A. Photo-on-Demand Synthesis of Vilsmeier Reagents with Chloroform and Their Applications to One-Pot Organic Syntheses. J. Org. Chem. 2021, 86, 6504−6517.

(20) (a) Tsuda, A. Carbonate Derivative Monomer Production Method for Making Secondary Battery Electrolyte or Polycarbonate. WO 2018211952 A1, 2018; U.S. Patent 11,130,728 B2, 2021; SG 11201909670 Y, 2021; JP 7041925 B2, 2022; CN ZL201880032021.8, 2022, RU 2771748 C2, 2022. (b) Tsuda, A. Fluorinated Carbonate Derivative Production Method. WO 2018211953 A1, 2018; U.S. Patent 11,167,259 B2, 2021; JP 7054096 B1, 2022. (c) Hashimoto, Y.; Hosokawa, S.; Liang, F.; Suzuki, Y.; Dai, N.; Tana, G.; Eda, K.; Kakiuchi, T.; Okazoe, T.; Harada, H.; Tsuda, A. Photo-on-Demand Base-Catalyzed Phosgena- tion Reactions with Chloroform: Synthesis of Arylcarbonate and Halocarbonate Esters. J. Org. Chem. 2021, 86, 9811−9819.

(21) (a) Tsuda, A.; Okazoe, T. Method for Producing Isocyanate Compounds. WO 2020/100971 A1, 2020. (b) Muranaka, R.; Liu, Y.; Okada, I.; Okazoe, T.; Tsuda, A. Photo-on-Demand Phosgenation Reactions with Chloroform for Selective Syntheses of N-Substituted Ureas and Isocyanates. ACS Omega 2022, 7, 5584−5594.

(22) (a) Tsuda, A.; Okazoe, T.; Okamoto, H. Method for Producing Carbonyl Halide from Halogenated Hydrocarbon. WO 2021/045105 Al, 2021. (b) Suzuki, Y.; Liang, F.; Okazoe, T.; Okamoto, H.; Takeuchi, Y.; Tsuda, A. Photo-on-Demand Phosgenation Reactions with Chloroform Triggered by Cl2 upon Irradiation with Visible Light: Syntheses of Chloroformates, Carbonate Esters, and Iso- cyanates. Chem. Lett. 2022, 51, 549−551.

(23) (a) Russell, R. B.; Edwards, O. L.; Raymonda, W. J. Vacuum Ultraviolet Absorption Spectra of the Chloromethanes. J. Am. Chem. Soc. 1973, 95, 2129. (b) Ogita, T.; Hatta, H.; Kagiya, T. Photoinduced Decomposition of Trihalomethanes in Aqueous Solution by UV Irradiation. Nippon Kagaku Kaishi 1983, 11, 1664− 1669.

(24) Zhao, H.; Liang, L.; wen Liu, H. Fast Photo-Catalytic Degradation of Pyridine in Nano Aluminum Oxide Suspension Systems. J. Environ. Sci. 2011, 23, S156−S158.

(25) Farlow, M. W. Hexamethylene Diicocyanate. Org. Synth. 1963, 31, 521.

(26) Bin, P.; Huang, R.; Zhou, X. Oxidation Resistance of the Sulfur Amino Acids: Methionine and Cysteine. BioMed Res. Int. 2017, 2017, 9584932.

(27) (a) Gibson, F. S.; Bergmeier, S. C.; Rapoport, H. Selective Removal of an N-BOC Protecting Group in the Presence of a tert- Butyl Ester and Other Acid-Sensitive Groups. J. Org. Chem. 1994, 59, 3216−3218. (b) Ashworth, I. W.; Cox, B. G.; Meyrick, B. Kinetics and Mechanism of N-Boc Cleavage: Evidence of a Second-Order Dependence upon Acid Concentration. J. Org. Chem. 2010, 75, 8117−8125.

(28) (a) Driscoll, C. T.; Mason, R. P.; Chan, H. M.; Jacob, D. J.; Pirrone, N. Mercury as a Global Pollutant: Sources, Pathways, and Effects. Environ. Sci. Technol. 2013, 47, 4967−4983. (b) Li, Z.; Jia, P.; Zhao, F.; Kang, Y. Mercury Pollution, Treatment and Solutions in Spent Fluorescent Lamps in Mainland China. Int. J. Environ. Res. Public Health 2018, 15, 2766.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る