リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Effects of solvent on pyrolysis-assisted catalytic hydrogenolysis of softwood lignin for high-yield production of monomers and phenols, as studied using coniferyl alcohol as a major primary pyrolysis product」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Effects of solvent on pyrolysis-assisted catalytic hydrogenolysis of softwood lignin for high-yield production of monomers and phenols, as studied using coniferyl alcohol as a major primary pyrolysis product

Wang, Jiaqi Minami, Eiji Kawamoto, Haruo 京都大学 DOI:10.1039/d3su00128h

2023.08.01

概要

Pyrolysis-assisted catalytic hydrogenolysis over Pd/C in anisole (phenyl methyl ether) at relatively high temperatures (>300 °C) can convert softwood lignin into aromatic monomers in >60 mol% yield (based on lignin aromatic rings). In this process, lignin is pyrolytically degraded to soluble intermediates prior to catalytic conversion, therefore the pyrolysis stage plays an important role in determining the yield and monomer composition. In this study, pyrolysis-assisted hydrogenolysis of coniferyl alcohol, which is a major pyrolysis product, and milled wood lignin isolated from Japanese cedar was investigated in various solvents, including water, methanol, toluene, hexane, and anisole, to clarify the solvent effects. The effects of the solvent on undesired side reactions were also explored. The results show that anisole is the best solvent for aromatic monomer production, but hexane is the best solvent for phenol production via demethoxylation. These findings provide insights that will facilitate the development of efficient methods for monomer production from lignin.

この論文で使われている画像

参考文献

1 Z. Sun, B. Fridrich, A. De Santi, S. Elangovan and K. Barta,

Chem. Rev., 2018, 118, 614–678.

2 J. Wang, E. Minami and H. Kawamoto, Green Chem., 2023,

25, 2583–2595.

3 J. Wang, E. Minami and H. Kawamoto, J. Anal. Appl. Pyrolysis,

2023, 105930.

4 N. Phaiboonsilpa, K. Yamauchi, X. Lu and S. Saka, J. Wood

Sci., 2010, 56, 331–338.

5 E. Minami and S. Saka, J. Wood Sci., 2003, 49, 73–78.

© 2023 The Author(s). Published by the Royal Society of Chemistry

RSC Sustainability

6 E. Dorrestijn, M. Kranenburg, D. Poinsot and P. Mulder,

Holzforschung, 1999, 53, 611–616.

7 T. Kotake, H. Kawamoto and S. Saka, J. Anal. Appl. Pyrolysis,

2014, 105, 309–316.

8 T. Parsell, S. Yohe, J. Degenstein, T. Jarrell, I. Klein,

E. Gencer, B. Hewetson, M. Hurt, J. I. Kim, H. Choudhari,

B. Saha, R. Meilan, N. Mosier, F. Ribeiro, W. N. Delgass,

C. Chapple, H. I. Kentt¨

amaa, R. Agrawal and M. M. AbuOmar, Green Chem., 2015, 17, 1492–1499.

9 J. Sun, H. Li, L. P. Xiao, X. Guo, Y. Fang, R. C. Sun and

G. Song, ACS Sustainable Chem. Eng., 2019, 7, 4666–4674.

10 J. M. Pepper and H. Hibbert, J. Am. Chem. Soc., 1948, 70, 67–

71.

11 J. Zhang, J. Teo, X. Chen, H. Asakura, T. Tanaka, K. Teramura

and N. Yan, ACS Catal., 2014, 4, 1574–1583.

12 C. Li, M. Zheng, A. Wang and T. Zhang, Energy Environ. Sci.,

2012, 5, 6383–6390.

13 M. V. Galkin, A. T. Smit, E. Subbotina, K. A. Artemenko,

J. Bergquist, W. J. J. Huijgen and J. S. M. Samec,

ChemSusChem, 2016, 9, 3280–3287.

14 Y. Li, B. Demir, L. M. V´

azquez Ramos, M. Chen,

J. A. Dumesic and J. Ralph, Green Chem., 2019, 21, 3561–

3572.

15 W. Lan, Y. P. Du, S. Sun, J. Behaghel De Bueren, F. H´

eroguel

and J. S. Luterbacher, Green Chem., 2021, 23, 320–327.

16 X. Ouyang, X. Huang, J. Zhu, M. D. Boot and E. J. M. Hensen,

ACS Sustainable Chem. Eng., 2019, 7, 13764–13773.

17 W. Schutyser, S. Van Den Bosch, T. Renders, T. De Boe,

S. F. Koelewijn, A. Dewaele, T. Ennaert, O. Verkinderen,

B. Goderis, C. M. Courtin and B. F. Sels, Green Chem.,

2015, 17, 5035–5045.

18 F. H´

eroguel, X. T. Nguyen and J. S. Luterbacher, ACS

Sustainable Chem. Eng., 2019, 7, 16952–16958.

19 K. Barta, T. D. Matson, M. L. Fettig, S. L. Scott, A. V. Iretskii

and P. C. Ford, Green Chem., 2010, 12, 1640–1647.

20 X. Huang, T. I. Kor´

anyi, M. D. Boot and E. J. M. Hensen,

ChemSusChem, 2014, 7, 2276–2288.

21 T. Nakamura, H. Kawamoto and S. Saka, J. Anal. Appl.

Pyrolysis, 2008, 81, 173–182.

22 H. Kawamoto and S. Saka, J. Wood Chem. Technol., 2007, 27,

113–120.

23 T. Kotake, H. Kawamoto and S. Saka, J. Anal. Appl. Pyrolysis,

2013, 104, 573–584.

24 J. Zhang, J. Sun and Y. Wang, Green Chem., 2020, 22, 1072–

1098.

25 S. Wang, B. Ru, H. Lin, W. Sun and Z. Luo, Bioresour.

Technol., 2015, 182, 120–127.

26 H. Kawamoto, T. Nakamura and S. Saka, Holzforschung,

2008, 62, 50–56.

27 T. L. K. Yong and M. Yukihiko, Ind. Eng. Chem. Res., 2013, 52,

9048–9059.

28 A. Björkman, Sven. Papperstidn., 1956, 59, 477–485.

29 S. Y. Lin and C. W. Dence, Methods in Lignin Chemistry,

Springer Science & Business Media, 2012.

RSC Sustainability, 2023, 1, 1192–1199 | 1199

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る