リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Development of artificial MET activators based on engineered self-assembling protein capsules」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Development of artificial MET activators based on engineered self-assembling protein capsules

小松, 大和 東京大学 DOI:10.15083/0002006697

2023.03.24

概要

論⽂審査の結果の要旨
⽒名

⼩松⼤和

MET タンパク質は⾎管新⽣や器官造成といった再⽣医療にとって重要なシ
グナリングの上流因⼦として知られる膜タンパク質である。このタンパク質は
リガンドによって⼆量体化することにより活性化し、下流因⼦の活性化を促す
ことが知られている。またそれだけでなく、⼀部のがん細胞の表⾯に過剰発現し
ており、リガンドによる⼆量体化によって、リガンド-MET 複合体の能動的にエ
ンドソームへ取り込まれることが知られている。本博⼠論⽂は、これらの MET
タンパク質の性質を利⽤し、2種類の新しい創薬基盤技術の構築に貢献してい
る。すなわち、(1)⼈⼯的に MET タンパク質の⼆量体化を促進し、再⽣医療
の上流制御に関わる分⼦の開発と、(2)MET タンパク質の能動的なエンドソ
ームへの取り込みを逆⼿に取り、効率的に MET 発現細胞への分⼦の運搬を可能
にするシステムの開発に成功している。またそれだけではなく、アルコール脱⽔
素酵素を有する⼤環状ペプチドの試験管内スクリーニング系の構築および分⼦
動⼒学法を⽤いた⼤環状ペプチドの膜透過性の合理的解釈にも挑戦している。
本博⼠論⽂は6章からなる。第1章の序論では、MET タンパク質の活性化機
構、MET シグナリング経路の重要性、本博⼠論⽂において要となるタンパク質
カプセルの性質と利点、⼤環状ペプチドのスクリーニング法およびそのタンパ
ク質編集への応⽤技術について記述している。
第2章では⼤環状ペプチドとタンパク質カプセルを組み合わせた新たな⼈⼯
MET 活性化分⼦の開発について記述している。本博⼠論⽂で⼩松⽒は、好熱細
菌由来のタンパク質カプセルである AaLS キャプシドに対して、MET タンパク
質に強⼒かつ特異的に結合する⼤環状ペプチドを⽤いたタンパク質編集を施す
ことで、⼈⼯的に MET タンパク質の⼆量体化および活性化に成功している。本
博⼠研究で開発された分⼦カプセルは、既存のタンパク質カプセルへのエンジ
ニアリングでなされてきたターゲッティング能の獲得だけでなく、タンパク質
カプセル⾃体がシグナリング経路に対してアゴニスト活性を持つようにカスタ
マイズされており、⾮常に新規性の⾼い研究であると⾔える。また、本博⼠研究
で開発された技術は、MET タンパク質だけでなく他のタンパク質についても応
⽤可能な技術であり、基盤技術として幅広い応⽤範囲を持つことが期待される。

1

第3章では、第2章で開発した分⼦カプセルを利⽤した、効率的な薬剤運搬技
術について記述している。⼩松⽒は、開発したキャプシドに化学修飾を施すこと
で、化学分⼦及びキャプシドの MET 発現細胞への局在を実証している。本博⼠
研究で開発された分⼦は、細胞表⾯に存在するタンパク質への単純な集積だけ
でなく、その後の細胞内へのエンドサイトーシスも誘起する活性を持つため、薬
剤運搬技術において独⾃性と実⽤性の⾼い研究であるといえる。また⼩松⽒は
エンドソーム内の取り込みに関して、MET ノックアウト細胞や MET 阻害剤を
⽤いた詳細な解析も⾏っており、本博⼠論⽂における技術が⾮常に特異性の⾼
い運搬を可能にすることも実証している。本章の研究は第2章と同様、幅広いタ
ンパク質に対して応⽤可能だと考えられ、将来性の⾼い研究であるといえる。
第4章では、アルコール脱⽔素酵素活性を有する⼤環状ペプチドの試験管内
スクリーニングについて記述している。⼩松⽒は、従来のスクリーニング技術で
は不可能であった、酵素活性を元にしたペプチドのスクリーニングの構築を、官
能基の変化を認識するスクリーニング系を構築することで成功させている。本
章のスクリーニング系および構築におけるプロセスは、他の官能基についても
応⽤可能であると考えられ、新規性・将来性の⾼い研究であると予⾒される。
第5章では、分⼦動⼒学法を⽤いた⼤環状ペプチドの膜透過性の合理的解釈
について記述している。⼩松⽒は、これまで分⼦動⼒学法でシミュレーションが
されていなかったチオエーテル環化ペプチドについて膜透過性に関連ある性質
の解析に成功しており、本章における研究は、新規性および応⽤性の⾼い研究で
あると⾔える。
第6章では、結論および展望を記述している。本博⼠論⽂で達成された分⼦カ
プセルの開発、スクリーニング系の構築、合理的解釈はどれも新規性・独⾃性の
⾼い研究であると考えられ、機能性タンパク質の開発および新規ペプチド開発
に貢献すると期待される。
なお、本博⼠論⽂の第2章・第3章は、松本邦夫⽒、酒井克也⽒、寺坂尚紘⽒、
⾼⽊淳⼀⽒、三原恵美⼦⽒、若林⾥咲⽒、Donald Hilvert ⽒との、第4章は横須
賀亮太⽒、後藤祐樹⽒との、第5章は Riniker Sereina ⽒との共同研究であるが、
本学位審査の研究内容は全て⼩松⽒が主体となって進めた研究であり、その寄
与が⼗分であると判断した。
以上のことより、本審査会委員は総意のもと、岩根由彦⽒の学位請求論⽂は博
⼠(理学)の学位授与に⼗分資すると認め、合格の判定を下した。

2

参考文献

1.

Nakamura, T. & Ichihara, K. N. A. Partial purification and characterization of

hepatocyte growth factor from serum of hepatectomized rats. 122, 10 (1984).

2.

Michalopoulos, G., Houck, K. A., Dolan, M. L. & Luetteke, N. C. Control of

Hepatocyte Replication by Two Serum Factors. 44, 7 (1984).

3.

Nakamura, T. et al. Molecular cloning and expression of human hepatocyte

growth factor. 342, 4 (1989).

4.

Keiji, M. et al. Molecular Cloning and Sequence Analysis of cDNA for Human

Hepatocyte Growth Factor. Biochem. Biophys. Res. Commun. 163, 967–973

(1989).

5.

Weidner, K. M. et al. Evidence for the identity of human scatter factor and human

hepatocyte growth factor. Proc. Natl. Acad. Sci. 88, 7001–7005 (1991).

6.

Trusolino, L., Bertotti, A. & Comoglio, P. M. MET signalling: principles and

functions in development, organ regeneration and cancer. Nat. Rev. Mol. Cell

Biol. 11, 834–848 (2010).

7.

Matsumoto, K., Funakoshi, H., Takahashi, H. & Sakai, K. HGF–Met Pathway in

Regeneration and Drug Discovery. Biomedicines 2, 275–300 (2014).

8.

Lokker, N. A. et al. Structure-function analysis of hepatocyte growth factor:

identification of variants that lack mitogenic activity yet retain high affinity

receptor binding. EMBO J. 11, 2503–2510 (1992).

9.

Chirgadze, D. Y. et al. Crystal structure of the NK1 fragment of HGF/SF suggests

a novel mode for growth factor dimerization and receptor binding. Nat. Struct.

Biol. 6, 8 (1999).

10.

Birchmeier, C., Birchmeier, W., Gherardi, E. & Vande Woude, G. F. Met,

metastasis, motility and more. Nat. Rev. Mol. Cell Biol. 4, 915–925 (2003).

11.

Organ, S. L. & Tsao, M.-S. An overview of the c-MET signaling pathway. Ther.

Adv. Med. Oncol. 3, S7–S19 (2011).

107

12.

Lemmon, M. A. & Schlessinger, J. Cell Signaling by Receptor Tyrosine Kinases.

Cell 141, 1117–1134 (2010).

13.

Mele, S. & Johnson, T. K. Receptor Tyrosine Kinases in Development: Insights

from Drosophila. Int. J. Mol. Sci. 21, 188 (2019).

14.

Szilveszter, K. P., Németh, T. & Mócsai, A. Tyrosine Kinases in Autoimmune

and Inflammatory Skin Diseases. Front. Immunol. 10, 1862 (2019).

15.

Wang, H. et al. The Function of the HGF/c-Met Axis in Hepatocellular

Carcinoma. Front. Cell Dev. Biol. 8, 55 (2020).

16.

Thayaparan, T., Spicer, J. F. & Maher, J. The role of the HGF/Met axis in

mesothelioma. Biochem. Soc. Trans. 44, 363–370 (2016).

17.

Cheng, F. & Guo, D. MET in glioma: signaling pathways and targeted therapies.

J. Exp. Clin. Cancer Res. 38, 270 (2019).

18.

Mulcahy, E. Q. X., Colόn, R. R. & Abounader, R. HGF/MET Signaling in

Malignant Brain Tumors. Int. J. Mol. Sci. 21, 7546 (2020).

19.

Miranda, O., Farooqui, M. & Siegfried, J. Status of Agents Targeting the HGF/cMet Axis in Lung Cancer. Cancers 10, 280 (2018).

20.

Moosavi, F., Giovannetti, E., Saso, L. & Firuzi, O. HGF/MET pathway

aberrations as diagnostic, prognostic, and predictive biomarkers in human

cancers. Crit. Rev. Clin. Lab. Sci. 56, 533–566 (2019).

21.

Liang, H. & Wang, M. MET Oncogene in Non-Small Cell Lung Cancer:

Mechanism of MET Dysregulation and Agents Targeting the HGF/c-Met Axis.

OncoTargets Ther. Volume 13, 2491–2510 (2020).

22.

Uehara, Y. et al. Placental defect and embryonic lethality in mice lacking

hepatocyte growth factor/scatter factor. Nature 373, 702–705 (1995).

23.

Hammond, D. E. et al. Endosomal Dynamics of Met Determine Signaling Output.

Mol. Biol. Cell 14, 1346–1354 (2003).

24.

Joffre, C. et al. A direct role for Met endocytosis in tumorigenesis. Nat. Cell Biol.

13, 827–837 (2011).

108

25.

Barrow-McGee, R. & Kermorgant, S. Met endosomal signalling: In the right

place, at the right time. Int. J. Biochem. Cell Biol. 49, 69–74 (2014).

26.

Mitchell, A. C., Briquez, P. S., Hubbell, J. A. & Cochran, J. R. Engineering

growth factors for regenerative medicine applications. Acta Biomater. 30, 1–12

(2016).

27.

Wang, Z. et al. Novel biomaterial strategies for controlled growth factor delivery

for biomedical applications. NPG Asia Mater. 9, e435–e435 (2017).

28.

Ross, J. et al. Protein Engineered Variants of Hepatocyte Growth Factor/Scatter

Factor Promote Proliferation of Primary Human Hepatocytes and in Rodent

Liver. Gastroenterology 142, 897–906 (2012).

29.

Ito, K. et al. Artificial human Met agonists based on macrocycle scaffolds. Nat.

Commun. 6, 6373 (2015).

30.

Ueki, R. et al. A chemically unmodified agonistic DNA with growth factor

functionality for in vivo therapeutic application. Sci. Adv. 6, eaay2801 (2020).

31.

Brinkhuis, R. P., Rutjes, F. P. J. T. & van Hest, J. C. M. Polymeric vesicles in

biomedical applications. Polym. Chem. 2, 1449 (2011).

32.

Elsabahy, M. & Wooley, K. L. Design of polymeric nanoparticles for biomedical

delivery applications. Chem. Soc. Rev. 41, 2545 (2012).

33.

Kamaly, N., Xiao, Z., Valencia, P. M., Radovic-Moreno, A. F. & Farokhzad, O.

C. Targeted polymeric therapeutic nanoparticles: design, development and

clinical translation. Chem. Soc. Rev. 41, 2971 (2012).

34.

Zasadzinski, J. A., Wong, B., Forbes, N., Braun, G. & Wu, G. Novel methods of

enhanced retention in and rapid, targeted release from liposomes. Curr. Opin.

Colloid Interface Sci. 16, 203–214 (2011).

35.

Chandrawati, R. & Caruso, F. Biomimetic Liposome- and Polymersome-Based

Multicompartmentalized Assemblies. Langmuir 28, 13798–13807 (2012).

36.

Akbarzadeh, A. et al. Liposome: classification, preparation, and applications.

Nanoscale Res. Lett. 8, 102 (2013).

109

37.

Kumar, S. & Randhawa, J. K. High melting lipid based approach for drug

delivery: Solid lipid nanoparticles. Mater. Sci. Eng. C 33, 1842–1852 (2013).

38.

Kumar, A., Zhang, X. & Liang, X.-J. Gold nanoparticles: Emerging paradigm for

targeted drug delivery system. Biotechnol. Adv. 31, 593–606 (2013).

39.

Wang, S., Wen, Y., Cui, Z. & Xue, Y. Size dependence of adsorption kinetics of

nano-MgO: a theoretical and experimental study. J. Nanoparticle Res. 18, 15

(2016).

40.

Valizadeh, A. et al. Quantum dots: synthesis, bioapplications, and toxicity.

Nanoscale Res. Lett. 7, 480 (2012).

41.

Probst, C. E., Zrazhevskiy, P., Bagalkot, V. & Gao, X. Quantum dots as a

platform for nanoparticle drug delivery vehicle design. Adv. Drug Deliv. Rev. 65,

703–718 (2013).

42.

Speir, J. A., Munshi, S., Wang, G., Baker, T. S. & Johnson, J. E. Structures of the

native and swollen forms of cowpea chlorotic mottle virus determined by X-ray

crystallography and cryo- electron microscopy. 33 (2014).

43.

Gillitzer, E., Suci, P., Young, M. & Douglas, T. Controlled Ligand Display on a

Symmetrical Protein-Cage Architecture Through Mixed Assembly. Small 2, 962–

966 (2006).

44.

Suci, P. A., Varpness, Z., Gillitzer, E., Douglas, T. & Young, M. Targeting and

Photodynamic Killing of a Microbial Pathogen Using Protein Cage Architectures

Functionalized with a Photosensitizer. Langmuir 23, 12280–12286 (2007).

45.

Minten, I. J., Hendriks, L. J. A., Nolte, R. J. M. & Cornelissen, J. J. L. M.

Controlled Encapsulation of Multiple Proteins in Virus Capsids. J. Am. Chem.

Soc. 131, 17771–17773 (2009).

46.

Lin, T. et al. The Refined Crystal Structure of Cowpea Mosaic Virus at 2.8 Å

Resolution. Virology 265, 20–34 (1999).

47.

Ochoa, W. F., Chatterji, A., Lin, T. & Johnson, J. E. Generation and Structural

Analysis of Reactive Empty Particles Derived from an Icosahedral Virus. Chem.

110

Biol. 13, 771–778 (2006).

48.

Steinmetz, N. F., Lomonossoff, G. P. & Evans, D. J. Cowpea Mosaic Virus for

Material Fabrication: Addressable Carboxylate Groups on a Programmable

Nanoscaffold. Langmuir 22, 3488–3490 (2006).

49.

Strable, E. et al. Unnatural Amino Acid Incorporation into Virus-Like Particles.

Bioconjug. Chem. 19, 866–875 (2008).

50.

Golmohammadi, R., Fridborg, K., Bundule, M., Valegård, K. & Liljas, L. The

crystal structure of bacteriophage Qβ at 3.5 Å resolution. Structure 4, 543–554

(1996).

51.

Prasuhn, D. E. et al. Plasma Clearance of Bacteriophage Qβ Particles as a

Function of Surface Charge. J. Am. Chem. Soc. 130, 1328–1334 (2008).

52.

Banerjee, D., Liu, A. P., Voss, N. R., Schmid, S. L. & Finn, M. G. Multivalent

Display and Receptor-Mediated Endocytosis of Transferrin on Virus-Like

Particles. ChemBioChem 11, 1273–1279 (2010).

53.

Uchida, M. et al. Targeting of Cancer Cells with Ferrimagnetic Ferritin Cage

Nanoparticles. J. Am. Chem. Soc. 128, 16626–16633 (2006).

54.

Lin, X. et al. Chimeric Ferritin Nanocages for Multiple Function Loading and

Multimodal Imaging. Nano Lett. 11, 814–819 (2011).

55.

Li, X. et al. Epidermal Growth Factor-Ferritin H-Chain Protein Nanoparticles for

Tumor Active Targeting. Small 8, 2505–2514 (2012).

56.

Zhen, Z. et al. RGD-Modified Apoferritin Nanoparticles for Efficient Drug

Delivery to Tumors. ACS Nano 7, 4830–4837 (2013).

57.

Khoshnejad, M., Parhiz, H., Shuvaev, V. V., Dmochowski, I. J. & Muzykantov,

V. R. Ferritin-based drug delivery systems: Hybrid nanocarriers for vascular

immunotargeting. J. Controlled Release 282, 13–24 (2018).

58.

He, J., Fan, K. & Yan, X. Ferritin drug carrier (FDC) for tumor targeting therapy.

J. Controlled Release 311–312, 288–300 (2019).

59.

Flenniken, M. L. et al. Selective attachment and release of a chemotherapeutic

111

agent from the interior of a protein cage architecture. Chem. Commun. 447 (2005)

doi:10.1039/b413435d.

60.

Guan, X., Chang, Y., Sun, J., Song, J. & Xie, Y. Engineered Hsp Protein

Nanocages for siRNA Delivery. Macromol. Biosci. 18, 1800013 (2018).

61.

Wagner, H. J., Capitain, C. C., Richter, K., Nessling, M. & Mampel, J.

Engineering bacterial microcompartments with heterologous enzyme cargos. Eng.

Life Sci. 17, 36–46 (2017).

62.

Rurup, W. F., Snijder, J., Koay, M. S. T., Heck, A. J. R. & Cornelissen, J. J. L. M.

Self-Sorting of Foreign Proteins in a Bacterial Nanocompartment. J. Am. Chem.

Soc. 136, 3828–3832 (2014).

63.

Moon, H., Lee, J., Min, J. & Kang, S. Developing Genetically Engineered

Encapsulin Protein Cage Nanoparticles as a Targeted Delivery Nanoplatform.

Biomacromolecules 15, 3794–3801 (2014).

64.

Seebeck, F. P., Woycechowsky, K. J., Zhuang, W., Rabe, J. P. & Hilvert, D. A

Simple Tagging System for Protein Encapsulation. J. Am. Chem. Soc. 128, 4516–

4517 (2006).

65.

Gabashvili, A. N. et al. Encapsulins—Bacterial Protein Nanocompartments:

Structure, Properties, and Application. Biomolecules 10, 966 (2020).

66.

Erlendsson, S. et al. Structures of virus-like capsids formed by the Drosophila

neuronal Arc proteins. Nat. Neurosci. 23, 172–175 (2020).

67.

Han, X. & Woycechowsky, K. J. Encapsulation and Controlled Release of Protein

Guests by the Bacillus subtilis Lumazine Synthase Capsid. Biochemistry 56,

6211–6220 (2017).

68.

Azuma, Y., Zschoche, R. & Hilvert, D. The C-terminal peptide of Aquifex

aeolicus riboflavin synthase directs encapsulation of native and foreign guests by

a cage-forming lumazine synthase. J. Biol. Chem. 292, 10321–10327 (2017).

69.

Lilavivat, S., Sardar, D., Jana, S., Thomas, G. C. & Woycechowsky, K. J. In Vivo

Encapsulation of Nucleic Acids Using an Engineered Nonviral Protein Capsid. J.

112

Am. Chem. Soc. 134, 13152–13155 (2012).

70.

Azuma, Y., Edwardson, T. G. W., Terasaka, N. & Hilvert, D. Modular Protein

Cages for Size-Selective RNA Packaging in Vivo. J. Am. Chem. Soc. 140, 566–

569 (2018).

71.

Zhang, X., Meining, W., Fischer, M., Bacher, A. & Ladenstein, R. X-ray structure

analysis and crystallographic refinement of lumazine synthase from the

hyperthermophile Aquifex aeolicus at 1.6 Å resolution: determinants of

thermostability revealed from structural comparisons. J. Mol. Biol. 306, 1099–

1114 (2001).

72.

Min, J., Kim, S., Lee, J. & Kang, S. Lumazine synthase protein cage

nanoparticles as modular delivery platforms for targeted drug delivery. RSC Adv

4, 48596–48600 (2014).

73.

Kim, H., Kang, Y. J., Min, J., Choi, H. & Kang, S. Development of an antibodybinding modular nanoplatform for antibody-guided targeted cell imaging and

delivery. RSC Adv. 6, 19208–19213 (2016).

74.

Wörsdörfer, B., Pianowski, Z. & Hilvert, D. Efficient in Vitro Encapsulation of

Protein Cargo by an Engineered Protein Container. J. Am. Chem. Soc. 134, 909–

911 (2012).

75.

Terasaka, N., Azuma, Y. & Hilvert, D. Laboratory evolution of virus-like

nucleocapsids from nonviral protein cages. Proc. Natl. Acad. Sci. 115, 5432–5437

(2018).

76.

Worsdorfer, B., Woycechowsky, K. J. & Hilvert, D. Directed Evolution of a

Protein Container. Science 331, 589–592 (2011).

77.

Sasaki, E. et al. Structure and assembly of scalable porous protein cages. Nat.

Commun. 8, 14663 (2017).

78.

Tanaka, Y. et al. Structural basis for the drug extrusion mechanism by a MATE

multidrug transporter. Nature 496, 247–251 (2013).

79.

Kodan, A. et al. Structural basis for gating mechanisms of a eukaryotic P113

glycoprotein homolog. Proc. Natl. Acad. Sci. 111, 4049–4054 (2014).

80.

Matsunaga, Y., Bashiruddin, N. K., Kitago, Y., Takagi, J. & Suga, H. Allosteric

Inhibition of a Semaphorin 4D Receptor Plexin B1 by a High-Affinity

Macrocyclic Peptide. Cell Chem. Biol. 23, 1341–1350 (2016).

81.

Morimoto, J., Hayashi, Y. & Suga, H. Discovery of Macrocyclic Peptides Armed

with a Mechanism-Based Warhead: Isoform-Selective Inhibition of Human

Deacetylase SIRT2. Angew. Chem. Int. Ed. 51, 3423–3427 (2012).

82.

Kawamura, A. et al. Highly selective inhibition of histone demethylases by de

novo macrocyclic peptides. Nat. Commun. 8, 14773 (2017).

83.

Yamagishi, Y. Natural Product-Like Macrocyclic N-Methyl-Peptide Inhibitors

against a Ubiquitin Ligase Uncovered from a Ribosome-Expressed De Novo

Library. 18, 1562–1570 (2011).

84.

Hayashi, Y., Morimoto, J. & Suga, H. In Vitro Selection of Anti-Akt2 ThioetherMacrocyclic Peptides Leading to Isoform-Selective Inhibitors. ACS Chem. Biol.

7, 607–613 (2012).

85.

Yu, H. et al. Macrocycle peptides delineate locked-open inhibition mechanism for

microorganism phosphoglycerate mutases. Nat. Commun. 8, 14932 (2017).

86.

Jongkees, S. A. K. Rapid Discovery of Potent and Selective GlycosidaseInhibiting De Novo Peptides. Cell Chem. Biol. 24, 381–390 (2017).

87.

Goto, Y. et al. Reprogramming the Translation Initiation for the Synthesis of

Physiologically Stable Cyclic Peptides. 3, 120–129 (2008).

88.

Vinogradov, A. A., Yin, Y. & Suga, H. Macrocyclic Peptides as Drug

Candidates: Recent Progress and Remaining Challenges. J. Am. Chem. Soc. 141,

4167–4181 (2019).

89.

Mihara, E. et al. Lasso-grafting of macrocyclic peptide pharmacophores yields

multi-functional proteins. https://www.researchsquare.com/article/rs-85705/v1

(2020) doi:10.21203/rs.3.rs-85705/v1.

90.

Azuma, Y., Herger, M. & Hilvert, D. Diversification of Protein Cage Structure

114

Using Circularly Permuted Subunits. J. Am. Chem. Soc. 140, 558–561 (2018).

91.

Fujii, Y. et al. PA tag: A versatile protein tagging system using a super high

affinity antibody against a dodecapeptide derived from human podoplanin.

Protein Expr. Purif. 95, 240–247 (2014).

92.

Mazzone, M. et al. An uncleavable form of pro–scatter factor suppresses tumor

growth and dissemination in mice. J. Clin. Invest. 114, 1418–1432 (2004).

93.

Gherardi, E. et al. Structural basis of hepatocyte growth factor/scatter factor and

MET signalling. Proc. Natl. Acad. Sci. 103, 4046–4051 (2006).

94.

Miao, W. et al. Impaired ligand‐dependent MET activation caused by an

extracellular SEMA domain missense mutation in lung cancer. Cancer Sci. 110,

3340–3349 (2019).

95.

Eklund, H. et al. Three-dimensional structure of horse liver alcohol

dehydrogenase at 2.4 Å resolution. J. Mol. Biol. 102, 27–59 (1976).

96.

Eklund, H. et al. Structure of a triclinic ternary complex of horse liver alcohol

dehydrogenase at 2.9 Å resolution. J. Mol. Biol. 146, 561–587 (1981).

97.

Eklund, H. et al. Three-dimensional structure of horse liver alcohol

dehydrogenase at 2.4 Å resolution. J. Mol. Biol. 102, 27–59 (1976).

98.

Eklund, H. et al. Structure of a triclinic ternary complex of horse liver alcohol

dehydrogenase at 2.9 Å resolution. J. Mol. Biol. 146, 561–587 (1981).

99.

Akagawa, K., Fujiwara, T., Sakamoto, S. & Kudo, K. One-pot sequential alcohol

oxidation and asymmetric α-oxyamination in aqueous media using recyclable

resin-supported peptide catalyst. Chem. Commun. 46, 8040 (2010).

100. Raj, S. B., Ramaswamy, S. & Plapp, B. V. Yeast Alcohol Dehydrogenase

Structure and Catalysis. Biochemistry 53, 5791–5803 (2014).

101. James P., F., Aubrey R., H. J., Rihe, L. & Leslie E., O. Synthesis of long prebiotic

oligomers on mineral surfaces. Nature 381, 59–61 (1996).

102. Benner, S. A., Ellington, A. D. & Tauer, A. Modern metabolism as a palimpsest

of the RNA world. Proc. Natl. Acad. Sci. 86, 7054–7058 (1989).

115

103. Bernhardt, H. S. The RNA world hypothesis: the worst theory of the early

evolution of life (except for all the others)a. Biol. Direct 7, 23 (2012).

104. Takatsuji, R. et al. Ribosomal Synthesis of Backbone-Cyclic Peptides Compatible

with In Vitro Display. J. Am. Chem. Soc. 141, 2279–2287 (2019).

105. Ryota, Y.

In Vitro Selection

of Peptide Catalysts with Alcohol Dehydrogenase

Activity. Master Thesis (2014).

106. Doak, B. C., Zheng, J., Dobritzsch, D. & Kihlberg, J. How Beyond Rule of 5

Drugs and Clinical Candidates Bind to Their Targets. J. Med. Chem. 59, 2312–

2327 (2016).

107. Fosgerau, K. & Hoffmann, T. Peptide therapeutics: current status and future

directions. Drug Discov. Today 20, 122–128 (2015).

108. Rüegger, A. et al. Cyclosporin A, ein immunsuppressiv wirksamer

Peptidmetabolit aus Trichoderma polysporum (L INK ex P ERS .) Rifai. Helv.

Chim. Acta 59, 1075–1092 (1976).

109. Wenger, R. M. Synthesis of Cyclosporine and Analogues: Structural

Requirements for Immunosuppressive Activity. Angew. Chem. Int. Ed. Engl. 24,

77–85 (1985).

110. Liu, J. et al. Calcineurin is a common target of cyclophilin-cyclosporin A and

FKBP-FK506 complexes. Cell 66, 807–815 (1991).

111. Liu, J. et al. Inhibition of T cell signaling by immunophilin-ligand complexes

correlates with loss of calcineurin phosphatase activity. Biochemistry 31, 3896–

3901 (1992).

112. Lipinski, C. A., Lombardo, F., Dominy, B. W. & Feeney, P. J. Experimental and

computational approaches to estimate solubility and permeability in drug

discovery and development settingsq. Adv. Drug Deliv. Rev. 24 (2001).

113. Refsgaard, H. H. F. et al. In Silico Prediction of Membrane Permeability from

Calculated Molecular Parameters. J. Med. Chem. 48, 805–811 (2005).

114. Ekins, S. & Rose, J. In silico ADME/Tox: the state of the art. J. Mol. Graph.

116

Model. 20, 305–309 (2002).

115. Ekins, S. et al. Progress in predicting human ADME parameters in silico. J.

Pharmacol. Toxicol. Methods 44, 251–272 (2000).

116. Ekins, S. et al. Three-Dimensional Quantitative Structure-Permeability

Relationship Analysis for a Series of Inhibitors of Rhinovirus Replication. J.

Chem. Inf. Comput. Sci. 41, 1578–1586 (2001).

117. Mälkiä, A., Murtomäki, L., Urtti, A. & Kontturi, K. Drug permeation in

biomembranes. Eur. J. Pharm. Sci. 23, 13–47 (2004).

118. Fujikawa, M., Ano, R., Nakao, K., Shimizu, R. & Akamatsu, M. Relationships

between structure and high-throughput screening permeability of diverse drugs

with artificial membranes: Application to prediction of Caco-2 cell permeability.

Bioorg. Med. Chem. 13, 4721–4732 (2005).

119. Veber, D. F. et al. Molecular Properties That Influence the Oral Bioavailability of

Drug Candidates. J. Med. Chem. 45, 2615–2623 (2002).

120. Leung, S. S. F., Mijalkovic, J., Borrelli, K. & Jacobson, M. P. Testing Physical

Models of Passive Membrane Permeation. J. Chem. Inf. Model. 52, 1621–1636

(2012).

121. Witek, J. et al. Kinetic Models of Cyclosporin A in Polar and Apolar

Environments Reveal Multiple Congruent Conformational States. J. Chem. Inf.

Model. 56, 1547–1562 (2016).

122. Rezai, T. et al. Conformational Flexibility, Internal Hydrogen Bonding, and

Passive Membrane Permeability: Successful in Silico Prediction of the Relative

Permeabilities of Cyclic Peptides. J. Am. Chem. Soc. 128, 14073–14080 (2006).

123. Witek, J. et al. Rationalization of the Membrane Permeability Differences in a

Series of Analogue Cyclic Decapeptides. J. Chem. Inf. Model. 59, 294–308

(2019).

124. Poger, D., Van Gunsteren, W. F. & Mark, A. E. A new force field for simulating

phosphatidylcholine bilayers. J. Comput. Chem. 31, 1117–1125 (2010).

117

125. Nathan, S. et al. Definition and testing of the GROMOS force-field versions

54A7 and 54B7. Eur Biophys J 40, 843–856 (2011).

126. Hritz, J. & Oostenbrink, C. Hamiltonian replica exchange molecular dynamics

using soft-core interactions. J. Chem. Phys. 128, 144121 (2008).

127. Meli, M. & Colombo, G. A Hamiltonian Replica Exchange Molecular Dynamics

(MD) Method for the Study of Folding, Based on the Analysis of the Stabilization

Determinants of Proteins. Int J Mol Sci 13 (2013).

118

List of accomplishments

【Publication related to the thesis】

1. “In vitro selection of an alcohol dehydrogenase peptidic enzyme”, Yamato

Komatsu, Ryota Yokosuka, Yuki Goto, Hiroaki Suga, Peptide Science, 2020,

99-100

【Publications not related to the thesis】

1. “Ribosomal Synthesis of Backbone-Cyclic Peptides Compatible with In Vitro

Display”, Ryo Takatsuji, Koki Shinbara, Takayuki Katoh, Yuki Goto, Toby

Passioura, Ryo Yajima, Yamato Komatsu, and Hiroaki Suga, J. Am. Chem. Soc.,

2019, 141, 2279-2287

2. ⼩松 ⼤和, 後藤 佑樹, 菅 裕明 「擬天然ペプチドの試験管内⼈⼯⽣

合成系による合成技術及びその医薬品候補分⼦探索への応⽤」,『第 80

号酵素⼯学研究会トピックス』, 酵素⼯学研究会, p23-28 (2018)

【Poster presentations】

1. “タンパク質酵素の起源に迫る!?アルコール酸化活性を持つペプチド

酵素のスクリーニング系構築”, ⼩松 ⼤和, 後藤 祐樹, 菅 裕明, 若⼿

ペプチド夏の勉強会, ⻑崎, 2017 年 8 ⽉

2. “アルコール脱⽔素触媒活性を有する短鎖ペプチド酵素の試験管内セ

レクション”, ⼩松 ⼤和, 横須賀 亮太, 後藤 祐樹, 菅 裕明, ⽇本ケミ

カルバイオロジー学会(JSCB)第 13 回年会, 東京, 2018 年 6 ⽉

3. “In vitro selection of an alcohol dehydrogenase peptidic enzyme”, Yamato

Komatsu, Ryota Yokosuka, Yuki Goto, Hiroaki Suga, 第 56 回ペプチド討論

会, 東京, 2019 年, 10 ⽉

119

Acknowledgements

This thesis was completed under the supervision of Prof. Hiroaki Suga. I would like

to express my sincere gratitude to Prof. Suga for his kind guidance, valuable suggestions

and encouragement throughout this work. I would like to thank Asst. Prof. Naohiro

Terasaka and Assoc. Prof. Yuki Goto for valuable discussions and teaching me various

concepts and techniques for organic chemistry and biochemistry. I also thank Assoc. Prof.

Takayuki Kato, Assoc. Prof. Naokazu Kano and Asst. Prof. Toby Passioura for their

helpful advice and discussions. I thank all members in Suga Lab.

I appreciate the work done by Prof. Kunio Matsumoto’s group in Kanazawa

University for biological assays in chapter 2 and 3. I also really thank Prof. Riniker

Sereina’s group, especially Prof. Riniker Sereina and Dr. König Gerhard, for the usage

authorization and lecture of GROMOS software in chapter 5.

I thank Materials Education program for the future leaders in Research, Insudtry, and

Technology (MERIT) for financial support. I also thank Japan Society for the Promotion

of Science (JSPS) for a grant and financial support.

Finally, I would like to thank my family for invaluable assistance and cheering words.

120

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る