リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Atomic-Resolution Electron Microscopic Imaging of Reaction Intermediates in Metal-Organic Framework Synthesis」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Atomic-Resolution Electron Microscopic Imaging of Reaction Intermediates in Metal-Organic Framework Synthesis

邢, 俊飞 東京大学 DOI:10.15083/0002004489

2022.06.22

概要

Metal-organic frameworks (MOFs) are the compounds made by coordination bonding between metal ions and organic ligands. MOFs have attracted significant interests in the past two decades for their unique structures and properties. However, their formation mechanism, especially the nucleation, the initial stage of crystallization, is uncovered and limits their applications. That is mainly because there are no suitable methodologies to analyze their structures at the molecular level. In this thesis, I focused on detecting the nucleation mechanism of MOFs by determining structures of the prenucleation clusters (PNCs) of MOFs by high-resolution transmission electron microscopy.

Chapter 1 describes the general introduction of the nucleation process study of MOFs and the single-molecule atomic-resolution real-time electron microscopy (SMART-EM). The advantage and current achievement of SMART-EM are discussed. Especially, SMART-EM imaging of PNCs of an organic crystal on a single molecule template is introduced as a key to experimental design of the current work.

Chapter 2 describes SMART-EM imaging the PNCs of MOF-2-DMF, a layerpacked two-dimensional MOF. The PNCs of MOF-2-DMF are demonstrated to be linear and square structures. The structure of a square PNC with a tetragonal node is determined. Its formation mechanism matches with two-step nucleation mechanism.

Chapter 3 describes SMART-EM imaging of PNCs of MOF-5, a three-dimensional MOF comprising the cubic unit structure. By using the SMART-EM technique, I successfully captured and identified cubic clusters with octahedral nodes as PNCs of MOF-5. By introducing iodine atoms, the structure of a cubic PNC comprising twelve ligands and 24 Zn atoms is precisely determined. The second step of two-step nucleation, the structure ordering step, is captured as SMART-EM videos.

Chapter 4 describes the formation mechanism investigation based on the timecourse of dimension analysis of PNCs by SMART-EM. Like MOF-2-DMF case, the formation mechanism of MOF-5 is demonstrated to be a two-step nucleation mechanism. The MOF-5 crystal forms after reacting for 4 h and undergoes Ostwald ripening for tens of hours. The higher order PNCs are converted from lower order PNCs as the pH increases with the decomposition of DMF.

Chapter 5 describes a new method to analyze the motion blur of image sequences at molecular level quantitatively. Also, I created a new model that can provide a visual impression close to the corresponding TEM image. With the help of heavy atoms, quantitative analysis of the deviation between simulation and real TEM images can be done.

Finally, Chapter 6 summarizes present studies and does perspective to the future application of SMART-EM.

参考文献

1.5 References

(1) Ji, X.; Lei, S.; Yu, S.-Y.; Cheng, H. Y.; Liu, W.; Poilvert, N.; Xiong, Y.; Dabo, I.; Mohney, S. E.; Badding, J. V.; Gopalan, V. ACS Photonics 2017, 4, 85.

(2) Li, L.; Chen, Y.; Liu, Z.; Chen, Q.; Wang, X.; Zhou, H. Adv. Mater. 2016, 28, 9862.

(3) Sibik, J.; Löbmann, K.; Rades, T.; Zeitler, J. A. Mol. Pharm. 2015, 12, 3062.

(4) Pfund, L. Y.; Price, C. P.; Frick, J. J.; Matzger, A. J. J. Am. Chem. Soc. 2015, 137, 871.

(5) Gibbs, J. W. Trans. Conn. Acad. Sci. 1876, 3, 108.

(6) Erdemir, D.; Lee, A. Y.; Myerson, A. S. Acc. Chem. Res. 2009, 42, 621.

(7) Thanh, N. T. K.; Maclean, N.; Mahiddine, S. Chem. Rev. 2014, 114, 7610.

(8) Talanquer, V.; Oxtoby, D. W. J. Chem. Phys. 1998, 109, 223.

(9) Shen, Y. C.; Oxtoby, D. W. J. Chem. Phys. 1996, 104, 4233.

(10) Wolde, P. R. t.; Frenkel, D. Science 1997, 277, 1975.

(11) Shore, J. D.; Perchak, D.; Shnidman, Y. J. Chem. Phys. 2000, 113, 6276.

(12) Pan, W.; Kolomeisky, A. B.; Vekilov, P. G. J. Chem. Phys. 2005, 122, 174905.

(13) Watzky, M. A.; Finney, E. E.; Finke, R. G. J. Am. Chem. Soc. 2008, 130, 11959.

(14) Besson, C.; Finney, E. E.; Finke, R. G. J. Am. Chem. Soc. 2005, 127, 8179.

(15) Yao, S.; Yuan, Y.; Xiao, C.; Li, W.; Kou, Y.; Dyson, P. J.; Yan, N.; Asakura, H.; Teramura, K.; Tanaka, T. J. Phys. Chem. C 2012, 116, 15076.

(16) Igarashi, K.; Azuma, M.; Kato, J.; Ooshima, H. J. Cryst. Growth 1999, 204, 191.

(17) Liao, H.-G.; Zherebetskyy, D.; Xin, H.; Czarnik, C.; Ercius, P.; Elmlund, H.; Pan, M.; Wang, L.-W.; Zheng, H. Science 2014, 345, 916.

(18) Eddaoudi, M.; Sava, D. F.; Eubank, J. F.; Adil, K.; Guillerm, V. Chem. Soc. Rev. 2015, 44, 228.

(19) Ockwig, N. W.; Delgado-Friedrichs, O.; O'Keeffe, M.; Yaghi, O. M. Acc. Chem. Res. 2005, 38, 176.

(20) Yaghi, O. M.; O'Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J. Nature 2003, 423, 705.

(21) Murray, L. J.; Dinca, M.; Long, J. R. Chem. Soc. Rev. 2009, 38, 1294.

(22) Liu, J.; Chen, L.; Cui, H.; Zhang, J.; Zhang, L.; Su, C.-Y. Chem. Soc. Rev. 2014, 43, 6011.

(23) Yang, S.; Ramirez-Cuesta, A. J.; Newby, R.; Garcia-Sakai, V.; Manuel, P.; Callear, S. K.; Campbell, S. I.; Tang, C. C.; Schröder, M. Nat. Chem. 2015, 7, 121.

(24) Stock, N.; Biswas, S. Chem. Rev. 2012, 112, 933.

(25) Wu, Y.; Henke, S.; Kieslich, G.; Schwedler, I.; Yang, M.; Fraser, D. A. X.; O'Hare, D. Angew. Chem. Int. Ed. 2016, 55, 14081.

(26) Millange, F.; Medina, M. I.; Guillou, N.; Férey, G.; Golden, K. M.; Walton, R. I. Angew. Chem. Int. Ed. 2010, 49, 763.

(27) Moh, P. Y.; Cubillas, P.; Anderson, M. W.; Attfield, M. P. J. Am. Chem. Soc. 2011, 133, 13304.

(28) Shoaee, M.; Anderson, M. W.; Attfield, M. P. Angew. Chem. Int. Ed. 2008, 47, 8525.

(29) Cubillas, P.; Anderson, M. W.; Attfield, M. P. Chem. Eur. J. 2012, 18, 15406.

(30) Hikov, T.; Schröder, C. A.; Cravillon, J.; Wiebcke, M.; Huber, K. Phys. Chem. Chem. Phys. 2012, 14, 511.

(31) Haouas, M.; Volkringer, C.; Loiseau, T.; Férey, G.; Taulelle, F. Chem. Mater. 2012, 24, 2462.

(32) Petersen, T. D.; Balakrishnan, G.; Weeks, C. L. Dalton Trans. 2015, 44, 12824.

(33) Ban , Y.; Li, Y.; Peng , Y.; Jin , H.; Jiao , W.; Liu, X.; Yang, W. Chem. Eur. J. 2014, 20, 11402.

(34) Conato, M. T.; Jacobson, A. J. Microporous Mesoporous Mater. 2013, 175, 107. (35) Lim, I. H.; Schrader, W.; Schüth, F. Chem. Mater. 2015, 27, 3088.

(36) Cravillon, J.; Schröder, C. A.; Nayuk, R.; Gummel, J.; Huber, K.; Wiebcke, M. Angew. Chem. Int. Ed. 2011, 50, 8067.

(37) Ban, Y.; Li, Y.; Liu, X.; Peng, Y.; Yang, W. Microporous Mesoporous Mater. 2013, 173, 29.

(38) Zheng, C.; Greer, H. F.; Chiang, C.-Y.; Zhou, W. CrystEngComm 2014, 16, 1064.

(39) Zhang, D.; Zhu, Y.; Liu, L.; Ying, X.; Hsiung, C.-E.; Sougrat, R.; Li, K.; Han, Y. Science 2018, 359, 675.

(40) Patterson, J. P.; Abellan, P.; Denny, M. S.; Park, C.; Browning, N. D.; Cohen, S. M.; Evans, J. E.; Gianneschi, N. C. J. Am. Chem. Soc. 2015, 137, 7322.

(41) Zhu, Y.; Ciston, J.; Zheng, B.; Miao, X.; Czarnik, C.; Pan, Y.; Sougrat, R.; Lai, Z.; Hsiung, C. E.; Yao, K.; Pinnau, I.; Pan, M.; Han, Y. Nat. Mater. 2017, 16, 532.

(42) Liu, L.; Chen, Z.; Wang, J.; Zhang, D.; Zhu, Y.; Ling, S.; Huang, K.-W.; Belmabkhout, Y.; Adil, K.; Zhang, Y.; Slater, B.; Eddaoudi, M.; Han, Y. Nat. Chem. 2019, 11, 622.

(43) Li, X.; Wang, J.; Liu, X.; Liu, L.; Cha, D.; Zheng, X.; Yousef, A. A.; Song, K.; Zhu, Y.; Zhang, D.; Han, Y. J. Am. Chem. Soc. 2019, 141, 12021.

(44) Biswal, D.; Kusalik, P. G. ACS Nano 2017, 11, 258.

(45) Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; O'Keeffe, M.; Yaghi, O. M. Science 2002, 295, 469.

(46) Nakamura, E.; Harano, K. Proceedings of the Japan Academy, Series B 2018, 94, 428.

(47) Koshino, M.; Tanaka, T.; Solin, N.; Suenaga, K.; Isobe, H.; Nakamura, E. Science 2007, 316, 853.

(48) Koshino, M.; Solin, N.; Tanaka, T.; Isobe, H.; Nakamura, E. Nat. Nanotechnol. 2008, 3, 595.

(49) Nakamura, E. Acc. Chem. Res. 2017, 50, 1281.

(50) Okada, S.; Kowashi, S.; Schweighauser, L.; Yamanouchi, K.; Harano, K.; Nakamura, E. J. Am. Chem. Soc. 2017, 139, 18281.

(51) Hirsch, A. Fullerenes and related structures; Springer: Berlin, 2003; Vol. 199.

(52) Isobe, H.; Tanaka, T.; Maeda, R.; Noiri, E.; Solin, N.; Yudasaka, M.; Iijima, S.; Nakamura, E. Angew. Chem. Int. Ed. 2006, 45, 6676.

(53) Nakamura, E.; Koshino, M.; Tanaka, T.; Niimi, Y.; Harano, K.; Nakamura, Y.; Isobe, H. J. Am. Chem. Soc. 2008, 130, 7808.

(54) Gorgoll, R. M.; Yücelen, E.; Kumamoto, A.; Shibata, N.; Harano, K.; Nakamura, E. J. Am. Chem. Soc. 2015, 137, 3474.

(55) Harano, K.; Homma, T.; Niimi, Y.; Koshino, M.; Suenaga, K.; Leibler, L.; Nakamura, E. Nat. Mater. 2012, 11, 877.

2.9 References

(1) Li, H.; Eddaoudi, M.; Groy, T. L.; Yaghi, O. M. J. Am. Chem. Soc. 1998, 120, 8571.

(2) Schweighauser, L.; Harano, K.; Nakamura, E. Inorg. Chem. Commun. 2017, 84, 1.

(3) Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; O'Keeffe, M.; Yaghi, O. M. Science 2002, 295, 469.

(4) Clausen, H. F.; Poulsen, R. D.; Bond, A. D.; Chevallier, M.-A. S.; Iversen, B. B. J. Solid State Chem. 2005, 178, 3342.

(5) Harano, K.; Homma, T.; Niimi, Y.; Koshino, M.; Suenaga, K.; Leibler, L.; Nakamura, E. Nat. Mater. 2012, 11, 877.

(6) Lee, J. K.; Jung, Y. H.; Stoltenberg, R. M.; Tok, J. B. H.; Bao, Z. J. Am. Chem. Soc. 2008, 130, 12854.

(7) Isobe, H.; Tanaka, T.; Maeda, R.; Noiri, E.; Solin, N.; Yudasaka, M.; Iijima, S.; Nakamura, E. Angew. Chem. Int. Ed. 2006, 45, 6676.

(8) Tranchemontagne, D. J.; Hunt, J. R.; Yaghi, O. M. Tetrahedron 2008, 64, 8553.

(9) Williams, D. B.; Carter, C. B. Transmission Electron Microscopy: A Textbook for Materials Science; 2nd Ed. ed.; Springer US: New York, 2009.

(10) Thevenaz, P.; Ruttimann, U. E.; Unser, M. IEEE Transactions on Image Processing 1998, 7, 27.

(11) Hosokawa, F.; Shinkawa, T.; Arai, Y.; Sannomiya, T. Ultramicroscopy 2015, 158, 56.

3.12 References

(1) van Zee, R. D.; Stephenson, J. C. J. Chem. Phys. 1995, 102, 6946.

(2) Li, D.; Keresztes, I.; Hopson, R.; Williard, P. G. Acc. Chem. Res. 2009, 42, 270.

(3) Kim, K. H.; Kim, J.; Oang, K. Y.; Lee, J. H.; Grolimund, D.; Milne, C. J.; Penfold, T. J.; Johnson, S. L.; Galler, A.; Kim, T. W.; Kim, J. G.; Suh, D.; Moon, J.; Kim, J.; Hong, K.; Guérin, L.; Kim, T. K.; Wulff, M.; Bressler, C.; Ihee, H. Phys. Chem. Chem. Phys. 2015, 17, 23298.

(4) Li, H.; Eddaoudi, M.; O'Keeffe, M.; Yaghi, O. M. Nature 1999, 402, 276.

(5) Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; O'Keeffe, M.; Yaghi, O. M. Science 2002, 295, 469.

(6) Hafizovic, J.; Bjørgen, M.; Olsbye, U.; Dietzel, P. D. C.; Bordiga, S.; Prestipino, C.; Lamberti, C.; Lillerud, K. P. J. Am. Chem. Soc. 2007, 129, 3612.

(7) Eddaoudi, M.; Sava, D. F.; Eubank, J. F.; Adil, K.; Guillerm, V. Chem. Soc. Rev. 2015, 44, 228.

(8) Ockwig, N. W.; Delgado-Friedrichs, O.; O'Keeffe, M.; Yaghi, O. M. Acc. Chem. Res. 2005, 38, 176.

(9) Yaghi, O. M.; O'Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J. Nature 2003, 423, 705.

(10) Cubillas, P.; Anderson, M. W.; Attfield, M. P. Cryst. Growth Des. 2013, 13, 4526.

(11) Cubillas, P.; Anderson, M. W.; Attfield, M. P. Chem. Eur. J. 2012, 18, 15406.

(12) Zheng, C.; Greer, H. F.; Chiang, C.-Y.; Zhou, W. CrystEngComm 2014, 16, 1064.

(13) Li, M.; Dincă, M. Chem. Mater. 2015, 27, 3203.

(14) Patterson, J. P.; Abellan, P.; Denny, M. S.; Park, C.; Browning, N. D.; Cohen, S. M.; Evans, J. E.; Gianneschi, N. C. J. Am. Chem. Soc. 2015, 137, 7322.

(15) Biswal, D.; Kusalik, P. G. ACS Nano 2017, 11, 258.

(16) Hermes, S.; Witte, T.; Hikov, T.; Zacher, D.; Bahnmüller, S.; Langstein, G.; Huber, K.; Fischer, R. A. J. Am. Chem. Soc. 2007, 129, 5324.

(17) Tranchemontagne, D. J.; Hunt, J. R.; Yaghi, O. M. Tetrahedron 2008, 64, 8553.

(18) Kaye, S. S.; Dailly, A.; Yaghi, O. M.; Long, J. R. J. Am. Chem. Soc. 2007, 129, 14176.

(19) Williams, D. B.; Carter, C. B. Transmission Electron Microscopy: A Textbook for Materials Science; 2nd Ed. ed.; Springer US: New York, 2009.

(20) Meek, S. T.; Perry, J. J.; Teich-McGoldrick, S. L.; Greathouse, J. A.; Allendorf, M. D. Cryst. Growth Des. 2011, 11, 4309.

(21) Li, Q.; Yu, P.; Luo, J.; Qi, C.; Zhang, Z.; Qian, J. Z. Anorg. Allg. Chem. 2017, 643, 166.

(22) Gould, S. L.; Tranchemontagne, D.; Yaghi, O. M.; Garcia-Garibay, M. A. J. Am. Chem. Soc. 2008, 130, 3246.

(23) Harano, K.; Homma, T.; Niimi, Y.; Koshino, M.; Suenaga, K.; Leibler, L.; Nakamura, E. Nat. Mater. 2012, 11, 877.

(24) Gorgoll, R. M.; Yücelen, E.; Kumamoto, A.; Shibata, N.; Harano, K.; Nakamura, E. J. Am. Chem. Soc. 2015, 137, 3474.

(25) Isobe, H.; Tanaka, T.; Maeda, R.; Noiri, E.; Solin, N.; Yudasaka, M.; Iijima, S.; Nakamura, E. Angew. Chem. Int. Ed. 2006, 45, 6676.

(26) Hu, W.; Zhu, N.; Tang, W.; Zhao, D. Org. Lett. 2008, 10, 2669.

(27) Lee, J. K.; Jung, Y. H.; Stoltenberg, R. M.; Tok, J. B. H.; Bao, Z. J. Am. Chem. Soc. 2008, 130, 12854.

(28) Thevenaz, P.; Ruttimann, U. E.; Unser, M. IEEE Transactions on Image Processing 1998, 7, 27.

(29) Hosokawa, F.; Shinkawa, T.; Arai, Y.; Sannomiya, T. Ultramicroscopy 2015, 158, 56.

4.5 References

(1) Surble, S.; Millange, F.; Serre, C.; Ferey, G.; Walton, R. I. Chem. Commun. 2006, 1518.

(2) Goesten, M. G.; Stavitski, E.; Juan-Alcañiz, J.; Martiñez-Joaristi, A.; Petukhov, A. V.; Kapteijn, F.; Gascon, J. Catal. Today 2013, 205, 120.

(3) Patterson, J. P.; Abellan, P.; Denny, M. S.; Park, C.; Browning, N. D.; Cohen, S. M.; Evans, J. E.; Gianneschi, N. C. J. Am. Chem. Soc. 2015, 137, 7322.

(4) Van Vleet, M. J.; Weng, T.; Li, X.; Schmidt, J. R. Chem. Rev. 2018, 118, 3681.

(5) Hausdorf, S.; Baitalow, F.; Seidel, J.; Mertens, F. O. R. L. The Journal of Physical Chemistry A 2007, 111, 4259.

(6) Kim, J.; Dolgos, M. R.; Lear, B. J. Cryst. Growth Des. 2015, 15, 4781.

(7) McKinstry, C.; Cathcart, R. J.; Cussen, E. J.; Fletcher, A. J.; Patwardhan, S. V.; Sefcik, J. Chem. Eng. J. 2016, 285, 718.

(8) Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; O'Keeffe, M.; Yaghi, O. M. Science 2002, 295, 469.

(9) Chen, B.; Wang, X.; Zhang, Q.; Xi, X.; Cai, J.; Qi, H.; Shi, S.; Wang, J.; Yuan, D.; Fang, M. J. Mater. Chem. 2010, 20, 3758.

(10) Zheng, C.; Greer, H. F.; Chiang, C.-Y.; Zhou, W. CrystEngComm 2014, 16, 1064.

(11) Cochran, W. G. Sampling techniques; John Wiley & Sons: New York, 1977.

(12) Thevenaz, P.; Ruttimann, U. E.; Unser, M. IEEE Transactions on Image Processing 1998, 7, 27.

(13) Hosokawa, F.; Shinkawa, T.; Arai, Y.; Sannomiya, T. Ultramicroscopy 2015, 158, 56.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る