リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「フェムト秒レーザパルスによるハイドロゲル内部での金属イオンの多光子還元 (本文)」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

フェムト秒レーザパルスによるハイドロゲル内部での金属イオンの多光子還元 (本文)

町田, 茉南 慶應義塾大学

2021.03.23

概要

保水性や生体適合性、光透過性等の様々な特性を持つハイドロゲルは、特異な光学特性あるいは電気特性を示す金属微細構造を付加することにより、両材料の特性を活用したフレキシブルデバイスの創出が期待できる。金属微細構造の付加には、ハイドロゲル内部に一様に含有させるナノ粒子分散法や、表面へのパターニングを施す転写技術等が用いられてきた。本学位論文著者は、フェムト秒レーザパルスによる多光子還元を利用した金属微細構造作製技術に着目した。パルス幅の極めて短いフェムト秒レーザパルスを集光することで、集光部近傍において生じる多光子吸収により様々な相互作用を誘起でき、金属イオンの光還元反応を誘起する多光子還元はレーザパルスの走査により高い形状自由度で金属微細構造を作製できる。本論文では、ハイドロゲル内部への集光フェムト秒レーザパルス照射により分子およびイオンに誘起される物理現象と物質間で生じる化学反応について議論し、空間選択的な多光子還元を誘起することでハイドロゲル内部に金属微細構造を付加することを目的とする。レーザパルスの走査により金属微細構造を作製し、ハイドロゲルの伸縮特性に応じた光学特性を得るとともに、構造の生成過程と形成について議論する。本論文は次の 6 章で構成されている。

第 1 章は序論である。ハイドロゲルの応用展開と金属微細構造を付加した研究事例について述べる。続いてフェムト秒レーザパルスによる金属微細構造作製技術を概説し、最後に本研究の目的と意義を述べる。

第 2 章では、高分子およびイオン、金属ナノ粒子を対象とした物質と光との相互作用について述べる。続いてハイドロゲルの物性とイオンの挙動について述べ、ハイドロゲル内部へのフェムト秒レーザパルス照射により誘起されると考えられる物理現象および化学反応をまとめる。

第 3 章では、フェムト秒レーザパルス照射によるハイドロゲル内部への金属微細構造作製に関する研究について述べる。集光部での多光子還元と熱蓄積の金属生成への寄与について議論し、明瞭で連続的な金属細線構造の作製を実証する。また、ハイドロゲルのイオン透過性を活用し、同一支持体内部への異種金属微細構造の作製を実証する。

第 4 章では、ハイドロゲルの外部環境応答を利用した伸縮性金属微細構造の作製に関する研究について述べる。ハイドロゲルの含水率変化により内部に作製した金属細線周期構造を伸縮させ、その寸法変化に応じた回折特性および吸光度特性を得る。

第 5 章では、ハイドロゲル内部での空間選択的な還元反応の促進および抑制に関する研究について述べる。イオン性蛍光分子を用いることで集光部での還元促進、集光部以外での還元抑制の同時誘起が可能であることを明らかにする。

第 6 章は、本論文の結論であり、本研究の成果を総括し、今後の展望を述べる。

この論文で使われている画像

参考文献

参考文献 第 1 章

[1] L. Nolting, J. Priesmann, C. Kockel, G. Rödler, T. Brauweiler, I. Hauer, M. Robinius, and A. Praktiknjo, “Generating Transparency in the Worldwide use of the terminology Industry 4.0,” Appl. Sci. 9(4659), pp. 1-18 (2019).

[2] 内閣府ウェブサイト https://www8.cao.go.jp/cstp/society5_0/ (2020 年 11 月)

[3] Ian W. Hamley, ソフトマター入門 高分子・コロイド・両親媒性分子・液晶 (Springer- Verlag Tokyo 株式会社, 2002)

[4] P. G. Gennes, “Soft Matter,” Rev. Mod. Phys. 64(3), pp.645-648 (1992).

[5] J. A. Rogers, Z. Bao, K. Baldwin, A. Dodabalapur, B. Crone, V. R. Raju, V. Kuck, H. Katz, K. Amundson, J. Ewing, and P. Drzaic, “Paper-like electronic displays: Large-area rubber-stamped plastic sheets of electronics and microencapsulated electrophoretic inks,” PNAS 98(9), pp.4835- 4840 (2001).

[6] K. Hatano, A. Chiba, T. Okano, N. Sugisawa, T. Inoue, S. Seo, K. Suzuki, Y. Oikawa, H. Miyake, J. Koyama, S. Yamazaki, S. Eguchi, M. Katayama, and M. Sakakura, “3.4-inch quarter high definition flexible active matrix organic light emitting display with oxide thin film transistor,” Jpn. J. Appl. Phys. 50(03CC06), pp.1-4 (2011).

[7] O. Y. Kweon, S. J. Lee, and J. H. Ohm “Wearable high-performance pressure sensors based on three-dimensional electrospun conductive nanofibers,” NPG Asia Mater. 10, pp. 540-551 (2018).

[8] 高分子学会編, 新版・高分子辞典 (朝倉書店, 1988)

[9] Polymer gel market: Global industry perspective, comprehensive analysis and forecast, 2020- 2026 (Zion Market Research, 2020).

[10] Smart polymers market: Global opportunity analysis and industry forecast, 2020-2027 (Allied Market Research, 2020).

[11] O. Wichterle and D. Lim, “Hydrophilic gels for biological use,” Nature 185(4706), pp.117-118 (1960).

[12] 厚生労働省ウェブサイトhttps://www.mhlw.go.jp/web/t_doc?dataId=81aa2787&datatype=0 &pageNo=1 (2020 年 11 月).

[13] Chemical week, p.21, July 24 (1974).

[14] 長田義仁, 梶原莞爾, ゲルハンドブック (株式会社エヌティーエス, 1997).

[15] S. Moor, G. L. Morland, M. A. Stradling, “Cable or cable component coated with a water swellable material,” US Patent (2003).

[16] M. Choi, J. Choi, S. Kim, and S. Nizamoglu, “Light-guiding hydrogels for cell-based sensing and optogenetic synthesis in vivo,” Nat. Photonics 7(12), pp.987-994 (2013).

[17] K. T. Nguyen and J. L. West, “Photopolymerizable hydrogels for tissue engineering applications,” Biomaterials 23(22), pp.4307-4314 (2002).

[18] M. C. Cushing and K. S. Anseth, “Hydrogel cell cultures,” Science 316(5828), pp.1133-1134 (2007).

[19] B. P. Chan, and K. W. Leong, “Scaffolding in tissue engineering: general approaches and tissue- specific considerations,” Eur. Spine. J. 17, pp.S467-479 (2008).

[20] I. M.-Harpaz, D. Y. Wang, S. Venkatraman, D. Seliktar, “Photopolymerization of cell- encapsulating hydrogels: Crosslinking efficiency versus cytotoxicity,” Acta Biomater. 8(5), pp. 1838-1848 (2012).

[21] Y. S. Kim, K. Cho, H. J. Lee, S. Chang, H. Lee, J. H. Kim, and W.- G. Koh, “Highly conductive and hydrated PEG-based hydrogels for the potential application of a tissue engineering scaffold,” React. Funct. Polym. 109, pp.15-22 (2016).

[22] M. Gajendiran, J. Choi, S-J. Kim, K. Kim, H. Shin, H-J. Koo, and K. Kim, “Conductive biomaterials for tissue engineering applications,” J. Ind. Eng. Chem. 51, pp.12-26 (2017).

[23] C. Cha, P. Soman, W. Zhu, M. Nikkhah, G. C-Unal, S. Chen, and A. Khademhosseini, “Structural reinforcement of cell-laden hydrogels with microfabricated three dimensional scaffolds,” Biomater. Sci. 2, pp.703-709 (2014).

[24] R. E. Wing, W. M. Doane, C. R. Russell, “Insoluble starch xanthate: Use in heavy metal removal,” J. Appl. Polym. Sci. 19(3), pp. 847-854 (1975).

[25] Q. Zhu and Z. Li, “Hydrogel-supported nanosized hydrous manganese dioxide: Synthesis, characterization, and adsorption behavior study for Pb2+, Cu2+, Cd2+, and Ni2+ removal from water,” Chem. Eng. J. 281, pp.69-80 (2015).

[26] M. Kumar, B. P. Tripathi, and V. K. Shahi, “Crosslinked chitosan/polyvinyl alcohol blend beads for removal and recovery of Cd(II) from wastewater,” J. Hazardous Mater. 172(2-3), pp.1041- 1048 (2009).

[27] J. Heller and P. V. Trescgny, “Controlled drug release by polymer dissolution Ⅱ: Enzyme- mediated delivery device,” J. Pharm. Sci. 68(7), pp. 919-921 (1979).

[28] R. J. Russell, M. V. Pishko, C. C. Gefrides, M. J. McShane, and G. L. Coté, “A fluorescence- based glucose biosensor using concanavalin A and dextran encapsulated in a poly(ethylene glycol) hydrogel,” Anal. Chem. 71, pp.3126-3132 (1999).

[29] R. M. K. Ramanan, P. Chellamthu, L. Tang, and K. T. Nguyen, “Development of a temperature- sensitive composite hydrogel for drug delivery applications,” Biotechnol. Progr. 22(1), pp.118- 125 (2006).

[30] A. M. Kloxin, A. M. Kasko, C. N. Salinas, and K. S. Anseth, “Photodegradable hydrogels for dynamic tuning of physical and chemical properties,” 324(5923), pp.59-63 (2009).

[31] D. G. Caldwell and P. M. Taylor, “An Artificial muscle actuator for robots,” Advanced Robotics pp. 244-258 (1989).

[32] 則次俊郎, “ソフトアクチュエータ,” 日本ロボット学会誌 17(6), pp.795-798 (1999).

[33] Y. Osada, H. Okuzaki, and H. Hori, “A polymer gel with electrically driven motility,” Nature 355, pp.242-244 (1992).

[34] F. Carpi, R. Kornbluh, P. S.- Larsen, and G. Alici, “Electroactive polymer actuators as artificial muscles: are they ready for bioinspired applications?” Bioinsp. Biomim. 6(045006), pp.1-10 (2011).

[35] M. B. Charati, I. Lee, K. C. Hribar, and J. A. Burdick, “Light-sensitive polypeptide hydrogel and nanorod composites,” Small 6(15), pp.1608-1611 (2010).

[36] E. Wang, M. S. Desai, and S.-W. Lee, “Light-controlled graphene-elastin composite hydrogel actuators,” Nano Lett. 13(6), pp.2826-2830 (2013).

[37] R. Bashir, “Micromechanical cantilever as an ultrasensitive pH microsensor,” 81(16), pp.3091- 3093 (2002).

[38] D. Kuckling, A. Richter, and K.-F. Arndt, “Temperature and pH-dependent swelling behavior of poly(N-isopropylacrylamide) copolymer hydrogels and their use in flow control,” Macromolecul. Mater. Eng. 288(2), pp.144-151 (2003).

[39] Z. Han, P. Wang, G. Mao, T. Yin, D. Zhong, Yiming, X. Hu, Z. Jia, G. Nian, S. Qu, and W. Yang, “Dual pH-responsive hydrogel actuator for lipophilic drug delivery,” ACS Appl. Mater. Interfaces 12(10), pp.12010-12017 (2020).

[40] J. Cong, X. Zhang, K. Chen, J. Xu, “Fiber optic Bragg grating sensor based on hydrogels for measuring salinity,” Sens. Actuators B 87(3), pp.487-490 (2002).

[41] P. V. N. Kishore, M. S. Shankar, and M. Satyanarayana, “Detection of trace amounts of chromium(VI) using hydrogel coated Fiber Bragg grating,” Sens. Actuators B 243, pp.626-633 (2017).

[42] R. A. Matula, “Electrical resistivity of copper, gold, palladium, and silver,” J. Phys. Chem. Ref. Data 8, pp.1147–1298 (1979).

[43] 中村友二, “LSI の配線技術と表面科学,” 表面科学 35(5), pp.236-243 (2014).

[44] Press release “Novartis signs up for Google smart lens,” Nat. Biotechnol. 32(9), p.856 (2014).

[45] Mojo vision inc. ウェブサイト https://www.mojo.vision/ (2020 年 11 月).

[46] Press release, Mojo vision inc. ウェブサイト https://www.mojo.vision/news/mojo-vision- raises-additional-51-million-in-series-b-1-round-funding-development-of-first-true-smart- contact-lens (2020 年 11 月).

[47] P. Wang, D. Pei. Z. Wang, M. Li, X. Ma, J. You, and C. Li, “Biocompatible and self-healing ionic gel skin as shape-adaptable and skin-adhering sensor of human motions,” Chem. Eng. J. 398(125540), pp.1-9 (2020).

[48] T. Tokuda, M. Takahashi, K. Uejima, K. Masuda, T. Kawamura, Y. Ohta, M. Motoyama, T. Noda, K. Sasagawa, T. Okitsu, S. Takeuchi, and J. Ohta, “CMOS image sensor-based implantable glucose sensor using glucose-responsive fluorescent hydrogel,” Biomed. Opt. Express 5(11), pp.3859-3870 (2014).

[49] D. Oran, S. G. Rodriques, R. Gao, and S. Asano, “3D nanofabrication by volumetric deposition and controlled shrinkage of patterned scaffolds,” Science 362(6420), pp.1281-1285 (2018).

[50] E. Palleau, D. Morales, M. D. Dickey, and O. D. Velev, “Reversible patterning and actuation of hydrogels by electrically assisted ionoprinting,” Nat. Commun. 4(2257), pp.1-7 (2013).

[51] C. F. Bohren, D. R. Huffman “Absorption and Scattering of Light by Small Particles” (New York: Wiley, 1983).

[52] C. J. Orendorff, T. K. Sau, and C. J. Murphy, “Shape-dependent plasmon-resonant gold nanoparticles,” Small 2(5), pp.636-639 (2006).

[53] S. Agnihotri, S. Mukherji, and S. Mukherji, “Size-controlled silver nanoparticles synthesized over the range 5-100 nm using the same protocol and their antibacterial efficacy,” RSC. Adv. 4, pp.3974-3983 (2014).

[54] S. Bayda, M. Adeel, T. Tuccinardi, M. Cordani, and F. Rizzolio, “The History of Nanoscience and Nanotechnology: From Chemical–Physical Applications to Nanomedicine,” Molecules 25(112), pp.1-15 (2020).

[55] N. G. Quilis, M. Dongen, P. Venugopalan, D. Kotlarek, C. Petri, A. M. Cencerrado, S. Stanescu, J. L. T. Herrera, U. Jonas, M. Möller, A. Mourran, and J. Dostalek, “Actively tunable collective localized surface plasmons by responsive hydrogel membrane,” Adv. Opt. Mater. 7(1900342), pp. 1-11 (2019).

[56] S. Jiang, K. Wang, Y. Dai, X. Zhang, and F. Xia, “Near-infrared light-triggered dual drug release using gold nanorod-embedded thermosensitive nanogel-crosslinked hydrogels,” Macromolecular Mater. Eng. 304(7),1900087, pp.1-7 (2019).

[57] T. Endo, R. Ikeda, Y. Yanagida, and T. Hatsuzawa, “Stimuli-responsive hydrogel-silver nanoparticles composite for development of localized surface plasmon resonance-based optical biosensor,” Anal. Chim. Acta. 611(2), pp.205-211 (2008).

[58] J. Wang, S. Banerji, N. Menegazzo, and W. Peng, “Glucose detection with surface plasmon resonance spectroscopy and molecularly imprinted hydrogel coatings,” Talanta 86(1), pp.133- 141 (2011).

[59] N. Albusta, D. Alarabi, S. A. Alsoud, M. Keogh, S. Akhtar, and F. Henari, “Detection of glucose using gold nanoparticles prepared by green synthesis,” Int. J. Eng. Sci. Res. 6(10), pp.1-10 (2018).

[60] A. Richter, G. Paschew, S. Klatt, J. Lienig, K.-F. Arngt, and H.-J. P. Adler, “Review on hydrogel- based pH sensors and microsensors,” Sensors 8(1), pp.561-581 (2008).

[61] C. Kroh, R. Wuchrer, M. Günther, T. Härtling, and G. Gerlach, “Evaluation of the pH-sensitive swelling of a hydrogel by means of a plasmonic sensor substrate,” J. Sens. Sens. Syst. 7, pp.51- 55 (2018).

[62] J.-H. Kim and T. R. Lee, “Thermo- and pH-responsive hydrogel-coated gold nanoparticles,” Chem. Mater. 16(19), pp.3647-3651 (2004).

[63] R. C. Tseng, C.-C. Chen, S.-M. Hsu, and H.-S. Chuang, “Contact-lens biosensors,” Sensors 18(8), 2651, pp.1-24 (2018).

[64] P. S. Kollbaum, A. Bradley, and L. N. Thibos, “Comparing the optical properties of soft contact lenses on and off the eye,” Optom. Vis. Sci. 90(9), pp.924-936 (2013).

[65] S. R. Sershen, S. L. Westcott, N. J. Halas, J. L. West, “Independent optically addressable nanoparticle-polymer optomechanical composites,” Appl. Phys. Lett. 80(24), pp.4609-4611 (2002).

[66] 永田和宏, “熱力学的に見た製鉄の歴史,” 無機マテリアル 4(271), pp.575-585 (1997).

[67] G. Hinrichs, “A programme of atomechanics: or, chemistry as a mechanics of the panatoms,” (Bayerische staatsbibiliothek, 1867).

[68] 中崎昌雄, “銀塩の感光性から現像写真術の発明まで,” 日本写真学会雑誌 66(6), pp.541-549 (2003).

[69] R. Meldola, “The chemistry of photography,” (Macmillan, 1889).

[70] 小浦延幸, 久野田淳, “無電解銀めっき,” 金属表面技術, 36(5), pp.182-190 (1985).

[71] B. Cattaneo, D. Chelazzi, R. Giorgi, T. Serena, C. Merlo, and P. Baglioni, “Physico-chemical characterization and conservation issues of photographs dated between 1890 and 1910,” J. Cultural Heritage 9(3), pp.277-284 (2008).

[72] S. Roy and A. Banerjee, “Amino acid based smart hydrogel: formation, characterization and fluorescence properties of silver nanoclusters within the hydrogel matrix,” Soft. Matter. 7(11), pp.5300-5308 (2011).

[73] C. S. Love, V. Chechik, D. K. Smith, K. Wilson, I. Ashworth, and C. Brennan, “Synthesis of gold nanoparticles within a supramolecular gel-phase network,” Chem. Commun. 15, pp. 1971- 1973 (2005).

[74] J.-S. Shen, Y.-L. Chen, J.-L. Huang, J.-D. Chen, C. Zhao, Y.-Q. Zheng, T. Yu, Y. Yang, and H.-W. Zhang, “Supramolecular hydrogels for creating gold and silver nanoparticles in situ,” Soft. Matter. 9(6), pp.2017-2023 (2013).

[75] H. Nolan, D. Sun, B. G. Falzon, S. Chakrabarti, D. B. Padmanaba, P. Maguire, D. Mariotti, T. Yu, D. Jones, G. Andrews, and D. Sun, “Metal nanoparticle-hydrogel nanocomposites for biomedical applications- An atmospheric pressure plasma synthesis approach,” Plasma Process Polym, 15(e1800112), pp.1-10 (2018).

[76] V. Weiser, E. Roth, A. Raab, M. M. J.-Lorenzo, S. Kelzenberg, and N. Eisenreich, “Thermite type reactions of different metals with iron-oxide and the influence of pressure,” Propellants Explos. Pyrotech. 35(3), pp.240-247 (2020).

[77] CRESTED ウェブサイト, http://www.crestec8.co.jp/business/electron.html (2020 年 11 月).

[78] C. Vieu, F. Carcenac, A. Pépin, Y. Chen, M. Mejias, A. Lebib, L. M-Ferlazzo, L. Couraud, and H. Launois, “Electron beam lithography: resolution limits and applications,” Appl. Surf. Sci. 164(1-4), pp.111-117 (2000).

[79] H. Wu, V. Sariola, C. Zhu, J. Zhao, M. Sitti, and C. J. Bettinger, “Transfer printing of metallic microstructures on adhesion-promoting hydrogel substrates,” Adv. Mater. 27(22), pp.3398- 3404 (2015).

[80] Y. Ahn, H. Lee, D. Lee, and Y. Lee, “Highly conductive and flexible silver nanowire-based microelectrodes on biocompatible hydrogel,” Appl. Mater. Interfaces 6(21), pp.18401-18407 (2014).

[81] S. Wei, R. Yin, T. Tang, Y. Wu, Y. Liu, P. Wang, K. Wang, M. Mei, R. Zou, and X. Duan, “Gas- permeable, irritation-free, transparent hydrogel contact lens devices with metal coated nanofiber mesh for eye interfacing,” ACS Nano 13(7), pp.7920-7929 (2019).

[82] N. Shimamoto, Y. Tanaka, H. Mitomo, R. Kawamura, K. Ijiro, K. Sasaki, and Y. Osada, “Nanopattern fabrication of gold on hydrogels and application to tunable photonic crystal,” Adv. Mater. 24(38), pp.5243-5248 (2012).

[83] H. Kim, J. Ge, J. Kim, S. Choi, H. Lee, H. Lee, W. Park, Y.Yin, and S. Kwon, “Structural colour printing using a magnetically tunable and lithographically fixable photonic crystal,” Nat. Photonics 3, pp. 534-540 (2009).

[84] N. Haustrup and G. M. O’Connor, “Impact of wavelength dependent thermo-elastic laser ablation mechanism on the generation of nanoparticles from thin gold films,” Appl. Phys. Lett. 101(263107), pp.1-5 (2012).

[85] E. D. Diebold, N. H. Mack, S. K. Doorn, E. Mazur, “Femtosecond laser-nanostructured substrates for surface enhanced Raman scattering,” Langmuir 25(3), pp.1790-1794 (2009).

[86] N. Bellini, R. Geremia, S. Norval, G. Fichet, and D. Kamakis, “Laser thin film patterning for rapid prototyping and customised production of flexible electronics devices,” J. Laser Micro. Nanoen. 11(3), pp. 388-394 (2016).

[87] S. Arakane, M. Mizoshiri, and S. Hata, “Direct patterning of Cu microstructures using femtosecond laser-induced CuO nanoparticle reduction,” Jpn. J. Appl. Phys. 54(06FP07), pp.1- 5 (2015).

[88] A. Watanabe, J. Cai, G. Qin, and L. Fan, “Formation of copper micropatterns by laser direct writing using copper nanoparticle ink,” Proc. of SPIE 9736, 97360D (2016).

[89] J. Noh, J. Ha, and D. Kim, “Femtosecond and nanosecond laser sintering of silver nanoparticles on a flexible substrate,” Appl. Surf. Sci. 511(145574), pp.1-11 (2020)

[90] T. Hou, S. Bai, W. Zhou, and A. Hu, “Laser direct writing of highly conductive circuits on modified polyimide,” J. Laser Micro. Nanoen. 12(1), pp.10-15 (2017).

[91] J. Qiu, K. Miura, T. Suzuki, T. Mitsuyu, and K. Hirao, “Permanent photoreduction of Sm3+ to Sm2+ inside a sodium aluminoborate glass by an infrared femtosecond pulsed laser,” Appl. Phys. Lett. 74, 10 (1999).

[92] J. Qiu, K. Kojima, K. Miura, T. Mitsuyu, and K. Hirao, “Infrared femtosecond laser pulse– induced permanent reduction of Eu3+ to Eu2+ in a fluorozirconate glass,” Opt. Lett. 24(11), pp.786-788 (1999).

[93] P.-W. Wu, W. Cheng, I. B. Martini, B. Dunn, B. J. Schwarts, and E. Yablonovitch, “Two-photon photographic production of three-dimensional metallic structures within a dielectric matrix,” Adv. Mater. 12(19), pp.1438-1441 (2000).

[94] K. Kaneko, H.-B. Sun, X-M. Duan, and S. Kawata, “Two-photon photoreduction of metallic nanoparticle gratings in a polymer matrix,” Appl. Phys. Lett. 83(7), pp.1426-1428 (2003).

[95] M. H. Hong, B. Luk’yanchuk, S. M. Huang, T. S. Ong, L. H. Van, and T. C. Chong, “Femtosecond laser application for high capacity optical data storage,” Appl. Phys. A 79, pp.791-794 (2004).

[96] T. Baldacchini, A.-C. Pons, J. Pons, C. N. LaFratta, J. T. Fourkas, Y. Sun, and M. J. Naughton, “Multi-photon laser direct writing of two-dimensional silver structures,” Opt. Express 13(4), pp.1275-1280 (2005).

[97] T. Tanaka, A. Ishikawa, and S. Kawata, “Two-photon-induced reduction of metal ions for fabricating three-dimensional electrically conductive metallic microstructure,” Appl. Phys. Lett. 88(081107), pp.1-3 (2006).

[98] A. Ishikawa, T. Tanaka, and S. Kawata, “Improvement in the reduction of silver ions in aqueous solution using two-photon sensitive dye,” Appl. Phys. Lett. 89(113102), pp.1-3 (2006).

[99] N. Tosa, J. Bosson, G. Vitrant, P. Baldeck, and O. Stephan, “Fabrication of metallic nanowires by two-photon absorption,” Sci. St. Research VII(4), pp.899-904 (2006).

[100] N. Tosa, J. Bosson, M. Pierre, C. Rambaud, M. Bouriau, G. Viitrant, O. Stéphan, S. Astilean, and P. L. Baldeck, “Optical properties of metallic nanostructures fabricated by two- photon induced photoreduction,” Proc. SPIE 6195(619501), pp.1-8 (2006).

[101] S. Maruo and T. Saeki, “Femtosecond laser direct writing of metallic microstructures by photoreduction of silver nitrate in a polymer matrix,” Opt. Express 16(2), pp.1174-1179 (2008).

[102] Y. Y. Cao, N. Takeyasu, T. Tanaka, X-M. Duan, and S. Kawata, “3D metallic nanostructure fabrication by surfactant-assisted multi-photon-induced reduction,” Small 5(10), pp.1144-1148 (2009).

[103] Y. Y. Cao, X.-Z. Dong, N. Takeyasu, T. Tanaka, Z.-S. Zhao, X.-M. Duan, and S. Kawata, “Morphology and size dependence of silver microstructures in fatty salts-assisted multiphoton photoreduction microfabrication” Appl. Phys. A 96(2), pp.453-458 (2009).

[104] B.-B. Xu, H. Xia, L.-G. Niu, Y.-L. Zhang, K. Sun, Q.-D. Chen, Y. Xu, Z.-Q. Lv, Z.-H. Li, H. Misawa, and H.-B. Sun, “Flexible Nanowiring of Metal on Nonplanar Substrates by Femtosecond-Laser-Induced Electroless Plating,” Small 6(16), pp.1762-1766 (2010).

[105] N. Tsutsumi, K. Nagata, and W. Sakai, “Two-photon laser fabrication of three-dimensional silver microstructures with submicron scale linewidth,” Appl. Phys. A 103, pp.421-426 (2011).

[106] K. Terzaki, N. Vasilantonakis, A. Gaidukeviciute, C. Reinhardt, C. Fotakis, M. Vamvakaki, and M.Farsari, “3D conducting nanostructures fabricated using direct laser writing,” Opt. Mater. Express 1(4), pp. 586-597 (2011).

[107] K. Vora, S. Kang, S. Shukla, and E. Mazur, “Fabrication of disconnected three-dimensional silver nanostructures in a polymer matrix,” Appl. Phys. Lett. 100(063120), pp.1-7 (2012).

[108] A. Ishikawa and T. Tanaka, “Two-photon fabrication of three-dimensional metallic nanostructures for plasmonic metamaterials,” J Laser Micro Nanoen. 7(1), pp.11-15 (2012).

[109] B.-B. Xu, R. Zhang, H. Wang, X.-Q. Liu, L. Wang, Z.-Chen, Ma, Q.-D. Chen, X.-Z. Xiao, B. Han, and H.-B. Sun, “Laser patterning of conductive gold micronanostructures from nanodots,” 4, pp.6955-6958 (2012).

[110] R. Nakamura, M. Hitomi, K. Kinashi, W. Sakai, and N. Tsutsumi, “Two-photon excitation by femtosecond laser in poly(N-vinylpyrrolidone) matrix doped with silver ions,” Chem. Phys. Lett. 558, pp.62-65 (2013).

[111] W.-E. Lu, Y.-L. Zhang, M.-L. Zheng, Y.-P. Jia, J. Liu, X.-Z. Dong, Z.-S. Zhao, C.-B. Li, Y. Xia, T.-C. Ye, and X.-M. Duan, “Femtosecond direct laser writing of gold nanostructures by ionic liquid assisted multiphoton photoreduction,” Opt. Mater. Express 3(10), pp. 1660-1673 (2013).

[112] Y. Cao and M. Gu, “λ/26 silver nanodots fabricated by direct laser writing through highly sensitive two- photon photoreduction,” Appl. Phys. Lett. 103(213104), pp.1-4 (2013).

[113] R. Nakamura, K. Kinashi, W. Sakai, and N. Tsutsumi, “Fabrication of the silver structure through two-photon excitation by femtosecond laser,” Chem. Phys. Lett. 610-611, pp.241-245 (2014).

[114] S. Kang, K. Vora, and E. Mazur, “One-step direct-laser metal writing of sub-100 nm 3D silver nanostructures in a gelatin matrix,” Nanotechnology 26(121001), pp.1-6 (2015).

[115] T. Tanaka, A. Ishikawa, and T. Amemiya, “Three-dimensional two-photon laser fabrication for metals, polymers, and magneto-optical materials,” Proc. SPIE 9353, pp.1-12 (2015).

[116] S. Tabrizi, Y. Cao, B. P. Cumming, B. Jia, and M. Gu, “Functional optical plasmonic resonators fabricated via highly photosensitive direct laser reduction,” Adv. Opt. Mater. 4, pp.529-533 (2016).

[117] Y.-Y. Zhao, M.-L. Zheng, X.-Z. Dong, F. Jin, J. Liu, X.-L. Ren, X.-M. Duan, and Z.-S. Zhao, “Tailored silver grid as transparent electrodes directly written by femtosecond laser,” Appl. Phys. Lett. 108(221104), pp.1-5 (2016).

[118] M. Terakawa, M. L. T-Mapa, A. Takami, D. Heinemann, N. N. Nedyalkov, Y. Nakajima, A. Hördt, T. Ripken, and A. Heisterkamp, “Femtosecond laser direct writing of metal microstructure in a stretchable poly(ethylene glycol) diacrylate (PEGDA),” Opt. Lett. 41(7), pp.1392-1395 (2016).

[119] X.-L. Ren, M.-L. Zheng, F. Jin, Y.-Y. Zhao, X.-Z. Dong, J. Liu, H. Yu, X.-M. Duan, and Z.-S. Zhao, “Laser direct writing of silver nanowire with amino acids-assisted multiphoton photoreduction,” J. Phys. Chem. C 120(46), pp.26532-26538 (2016).

[120] G.-C. He, M.-L. Zheng, X.-Z. Dong, F. Jin, J. Liu, X.-M. Duan, and Z.-S. Zhao, “The conductive silver nanowires fabricated by two-beam laser direct writing on the flexible sheet,” Sci. Rep. 7(41757), pp.1-8 (2017).

[121] S. Toriyama, V. Mizeikis, and A. Ono, “Fabrication of silver nano-rings using photo-reduction induced by femtosecond pulses,” Appl. Phys. Express 12(015004), pp.1-4 (2019).

[122] L. Liu, D. Yang, W. Wan, H. Yang, Q. Gong, and Y. Li, “Fast fabrication of silver helical metamaterial with single-exposure femtosecond laser photoreduction,” Nanophotonics 8(6), pp.1087-1093 (2019).

[123] A. Ono, S. Toriyama, and V. Mizeikis, “Femtosecond laser writing of metallic nanostructures using silver photo-reduction,” Proc. SPIE 11201, pp.1-2 (2019).

[124] H. Nishiyama, K. Umetsu, and K. Kimura, “Versatile direct laser writing of non- photosensitive materials using multi-photon reduction-based assembly of nanoparticles,” Sci. Rep. 9(14310), pp. 1-10 (2019).

[125] C. Li, J. Hu, L. Jiang, C. Xu, X. Li, Y. Gao, and L. Qu, “Shaped femtosecond laser induced photoreduction for highly controllable Au nanoparticles based on localized field enhancement and their SERS applications,” Nanophotonics 9(3), pp.691-702 (2020).

[126] K. Mizuguchi, Y. Nagano, H. Nishiyama, H. Onoe, and M. Terakawa, “Multiphoton photoreduction for dual-wavelength-light-driven shrinkage and actuation in hydrogel,” Opt. Mater. Express 10(8), pp.1931-1940 (2020).

[127] H. Nishiyama, S. Odashima, and S. Asoh, “Femtosecond laser writing of plasmonic nanoparticles inside PNIPAM microgels for light-driven 3D soft actuators,” Opt. Express 28(18), pp.26470-26480 (2020).

参考文献 第 2 章

[1] N. A. P. K.- Maguire, “Photochemistry and photophysics of coordination compounds: chromium,” Top Curr Chem. 280, pp.37-67 (2007).

[2] 井上晴夫, 高木克彦, 佐々木政子, 朴鐘震, “光化学Ⅰ” (丸善出版, 1999).

[3] A. S. Coolidge, H. M. James, and R. D. Present, “A study of the Franck-Condon principle,” J. Chem. Phys. 4, pp.193-211 (1935).

[4] M. Lax, “The Franck-Condon principle and its application to crystals,” J. Chem. Phys. 20(11), pp.1752-1760 (1952).

[5] W. W. Robertson, “Application of the Franck-Condon principle to molecular excitation by collision with excited atoms and molecules,” J. Chem. Phys. 44(6), pp.2456-2461 (1965).

[6] 吉良爽, “励起移動と電子移動,” 日本写真学会誌 50(3), pp.217-221 (1987).

[7] H. Essén, “The physics of the born-oppenheimer approximation,” Int. J. Quantum Chem. 12(4), pp.721-735 (1977).

[8] 真船文隆, 廣川淳, ”反応㏿度論” (裳華房, 2017).

[9] G. C. Lie, “Boltzmann distribution and Boltzmann’s hypothesis,” J. Chem. Edc. 58(8), pp.603- 604 (1981).

[10] E. Hecht, “Optics 4th edition,” (Addison Wesley, 2002).

[11] G. Mie, “Beiträge zur optik trüber meiden, speziell kolloidaler Metallösungen,” Ann. D. Physik 330, pp.377-445 (1908).

[12] J. McMurry, “マクマリー有機化学(上) 第 9 版,” (東京化学同人, 2017).

[13] 岡村誠三, 中島章夫, 小野木重治, 河合弘迪, 西島安則, 東村敏延, 伊勢典夫,“高分子化学序論 第 2 版,” (化学同人, 1981).

[14] P. Debye, “Light scattering in solutions,” J. Appl. Phys. 15, pp.338-342 (1944).

[15] P. Debye and A. M. Bueche, “Scattering by an inhomogeneous solid,” J. Appl. Phys. 20, pp.518- 525 (1949).

[16] R. S. Stein and M. B. Rhodes, “Photographic light scattering by polyethylene films,” J. Appl. Phys. 31(11), pp.1873-1884 (1960).

[17] P. M. Kharkar, K. L. Kiick, and A. M. Kloxin, “Designing degradable hydrogels for orthogonal control of cell microenvironments,” Chem. Soc. Rev. 42, pp. 7335-7372 (2013).

[18] S. Wang, W. Liang, Z. Dong, V. G. B. Lee, and W. J. Li, “Fabrication of micrometer- and nanometer-scale polymer structures by visible light induced dielectrophoresis (DEP) force,” Micromachines 2, pp.431-442 (2011).

[19] W. Yang, H. Yu, W. Liang, Y. Wang, and L. Liu, “Rapid fabrication of hydrogel microstructures using UV-induced projection printing,” Micromachines 6, pp.1903-1913 (2015).

[20] P. J. Flory, “Principles of Polymer Chemistry,” (Cornell University Press, 1953).

[21] J. H. Holtz and S. A. Asher, “Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials,” Nature 389, pp.829-832 (1997).

[22] 柴山充弘, “ゲルの物理と化学の新展開,” 日本物理学会誌 72(4), pp.226-227 (2017).

[23] 渡辺正義, “ハイドロゲルの相転移と電極表面修飾,” 表面技術 46(4), pp.324-330 (1995).

[24] J. P. Baker, H. W. Blanch, and J. M. Prausnitz, “Swelling properties of acrylamide-based ampholytic hydrogels: comparison of experiment with theory,” Polymer 36(5), pp.1061-1069 (1995).

[25] F. Horkay, I. Tasaki, and P. J. Basser, “Osmotic swelling of polyacrylate hydrogels in physiological salt solutions,” Biomacromolecules 1(1), pp.84-90 (2000).

[26] A. M. Kloxin, A. M. Kasko, C. N. Salinas, and K. S. Anseth, “Photodegradable hydrogels for dynamic tuning of physical and chemical properties,” Science 324(5923), pp.59-63 (2009).

[27] M. Tamura, F. Yanagawa, S. Sugiura, T. Takagi, K. Sumaru, and T. Kanamori, “Click- crosslinkable and photodegradable gelatin hydrogels for cytocompatible optical cell manipulation in natural environment,” Sci. Rep. 5(15060), pp.1-12 (2015).

[28] S. Pradhan, K. A. Keller, J. L. Sperduto, and J. H. Slater, “Fundamentals of laser-based hydrogel degradation and applications in cell and tissue engineering,” Adv. Healthc. Mater. 6(24), pp.1- 48 (2017).

[29] 大辻吉男, “有機光化学反応の最近の進歩,” 有機合成化学, 24(1), pp.1-15 (1966).

[30] D. A. Skoog, F. J. Holler, and D. A. Nieman, “Introduction to UV spectroscopy in, principle of instrumental analysis, 5th edition” (Cole publication, 2004).

[31] S. G. Bratsch. “Standard electrode potentials and temperature coefficients in water at 298.15K,” J. Phys. Chem. Ref. Data, 18(1), pp.1-21 (1989).

[32] H. Yang, X. Heng, and J. Hu, “Salt- and pH-resistant gold nanoparticles decorated with mixed- charge zwitterionic ligands, and their pH-induced concentration behavior,” RSC Adcances 2, pp.12648-12651, (2012).

[33] J. Singh, A. N. Srivastav, N. Singh, and A. Singh, “Stability constants of metal complexes in solution” (InTech, 2019)

[34] M. Lein, M. Rudolph, S. K. Hashmi, and P. Schwerdtfeger, “Homogeneous gold catalysis: Mechanism and relativistic effects of the addition of water to propyne,” Organometallics 29(10), pp.2206-2210 (2010).

[35] P. N. Butcher and D. Cotter, “The elements of nonlinear optics” (Cambridge University Press, 1991).

[36] 黒田和男, “非線形光学” (コロナ社, 2008).

[37] 矢島達夫, “非線形光学の基礎Ⅱ: 2 次と 3 次の現象,” レーザー研究 27(2), pp.130-138 (1999).

[38] K. Sugioka and Y. Cheng, “Ultrafast lasers−reliable tools for advanced materials processing,” Light Sci. Appl. 3(e149), pp.1-12 (2014).

[39] B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Optical ablation by high-power short-pulse lasers,” J. Opt. Soc. Am. B 13(2), pp.459-468 (1996).

[40] L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys. Jetp. 20(5), pp.1307-1314 (1965).

[41] C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12(11), pp.1784-1794 (2001).

[42] 八ツ橋 知幸, “レーザーイオン化の基礎と応用,” 光学 42(11), pp.530-538 (2013).

[43] T. J. Mcllrath, P. H. Bucksbaum, R. R. Freeman, and M. Bashkansky, “Above-threshold ionization processes in xenon and krypton,” Phys. Rev. A 35(11), pp.4611-4623 (1987).

[44] H. R. Reiss, “Unsuitability of the Keldysh parameter for laser fields,” Phy. Rev. A 82(2), 023418-1-3 (2010).

[45] J. K. Chen and J. E. Beraun, “Numerical study of ultrashort laser pulse interactions with metal films,” Numer. Heat Tr. A-Appl. 40(1), pp.1-20 (2001).

[46] C. H. Fan, J. Sun, and J. P. Longtin, “Breakdown threshold and localized electron density in water induced by ultrashort laser pulses,” J. Appl. Phy. 91(4), pp.2530-2536 (2002).

[47] J. Crank, “The mathematics of diffusion, 2nd ed.” (Oxford University Press, 1975).

[48] T. Tanaka, A. Ishikawa, and S. Kawata, “Two-photon-induced reduction of metal ions for fabricating three-dimensional electrically conductive metallic microstructure,” Appl. Phys. Lett. 88(081107), pp.1-3 (2006).

[49] R. Huang and W. H. Knox, “Femtosecond micro-machining of hydrogels: parametric study and photochemical model including material saturation,” Opt. Mater. Express 9(9), pp.3818-3834 (2019).

[50] I. Verit, C. Rigothier, L. Gemini, J. Preterre, C. J.- Leger, J.-C. Fricain, and R. Kling, “Biofabrication of a vascular capillary by ultra-short laser pulses,” Proc. SPIE 10876(1087603), pp.1-8 (2019).

[51] R. Janardhanan, M. Karuppaiah, N. Hebalkar, T. N. Rao, “Synthesis and surface chemistry of nanosilver particles,” Polyhedron 28(12), pp.2522-2530 (2009).

[52] R. S. Treptow, “Le Chatelier’s principle: A reexamination and method of graphic illustration,” J. Chem. Educ. 57(6), pp.417-420 (1980).

[53] 米沢剛至, “反射光で見る銀鏡反応,”化学と教育 63(2), pp.98-100 (2015).

[54] 井野口治, 村上正和, “蟻酸に関する銀鏡反応とフェーリング反応,” 化学と教育 43(11), pp.718-719 (1995).

[55] J.-J. Park, X. Bulliard, J. M. Lee, J. Hur, K. Im, J.-M. Kim, P. Prabhakaran, N. Cho, K.-S. Lee, S.-Y. Min, T.-W. Lee, S. Yong, and D.-Y. Yang, “Pattern Formation of Silver Nanoparticles in 1-, 2-, and 3D Microstructures Fabricated by a Photo- and Thermal Reduction Method,” Adv. Func. Mater. 20(14), pp.2296-2302 (2010).

[56] T. Juhasz, G. A. Kastis, C. Suárez, Z. Bor, and W. E. Bron, “Time-resolved observations of shock waves and cavitation bubbles generated by femtosecond laser pulses in corneal tissue and water,” Lasers Surg. Med. 19(1), pp.23-31 (1996).

[57] A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), pp.1015-1047 (2005).

[58] C. B. Schaffer, N. Nishimura, E. N. Glezer, A. M.-T. Kim, and E. Mazur, “Dynamics of femtosecond laser-induced breakdown in water from femtoseconds to microseconds,” Opt. Express 10(3), pp.196-203 (2002).

[59] J. Noack and A. Vogel, “Laser-induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption coefficients, and energy density,” IEEE J. Quantum Elect. 35(8), pp.1156-1167 (1999).

[60] M. Malinauskas, A. Žukauskas, G. Bičkauskaitė, R. Gadonas, and S. Juodkazis, “Mechanisms of three-dimensional structuring of photo-polymers by tightly focussed femtosecond laser pulses,” Opt. Express 18(10), pp.10209-10221 (2010).

[61] Y.-Y. Cao, N. Takeyasu, T. Tanaka, X.-M. Duan, and S. Kawata, “3D metallic nanostructure fabrication by surfactant-assisted multi-photon-induced reduction,” Small 5(10), pp.1144-1148 (2009).

[62] X.-L. Ren, M.-L. Zheng, F. Jin, Y.-Y. Zhao, X.-Z. Dong, J. Liu, H. Yu, X.-M. Duan, and Z.-S. Zhao, “Laser direct writing of silver nanowire with amino acids-assisted multiphoton photoreduction,” J. Phys. Chem. C 120(46), pp.26532-26538 (2016).

[63] T. S. Rodrigues, M. Zhao, T.-H. Yang, K. D. Gilroy, A. G. M. da Silva, P. H. C. Camargo, and Y. Xia, “Synthesis of Colloidal Metal Nanocrystals:A Comprehensive Review on the Reductants,” Chem. Eur. J. 24(64), pp.16944-16963 (2018).

[64] S. E. Skrabalak, B. J. Wiley, M. Kim. E. V. Formo, and Y. Xia, “On the Polyol Synthesis of Silver Nanostructures: Glycolaldehyde as a Reducing Agent,” Nano Lett. 8(7), pp.2077-2081 (2008).

[65] L. Liu. D. Yang, W. Wan, H. Yang, Q. Gong, and Y. Li, “Fast fabrication of silver helical metamaterial with single-exposure femtosecond laser photoreduction,” Nanophotonics 8(6), pp.1087-1093 (2019).

[66] M. H. Hong, B. Luk’yanchuk, S. M. Huang, T. S. Ong, L. H. Van, and T. C. Chong, “Femtosecond laser application for high capacity optical data storage,” Appl. Phys. A 79, pp.791-794 (2004).

[67] N. Tosa, J. Bosson, G. Vitrant, P. Baldeck, and O. Stephan, “Fabrication of metallic nanowires by two-photon absorption,” Sci. St. Research VII(4), pp.899-904 (2006).

[68] K. Terzaki, N. Vasilantonakis, A. Gaidukeviciute, C. Reinhardt, C. Fotakis, M. Vamvakaki, and M. Farsari, “3D conducting nanostructures fabricated using direct laser writing,” Opt. Mater. Express 1(4), pp.586-597 (2011).

[69] S. Shukla, X. Vidal, E. P. Furlani, M. T. Swihart, K.-T. Kim, Y.-K. Yoon, A. Urbas, and P. N. Prasad, “Subwavelength direct laser patterning of conductive gold nanostructures by simultaneous photopolymerization and photoreduction,” ACS Nano 5(3), pp.1947-1957 (2011).

[70] A. Ishikawa, T. Tanaka, and S. Kawata, “Improvement in the reduction of silver ions in aqueous solution using two-photon sensitive dye,” Appl. Phys. Lett. 89(11), 113102 (2006).

[71] L. Marcu, W. S. Grundfest, and J.-M. I. Maarek, “Photobleaching of arterial fluorescent compounds: Characterization of elastin, collagen, and cholesterol time-resolved spectra during prolonged ultraviolet irradiation,” 69(6), pp. 713-721 (1999).

[72] 中澄博行, “色素の退色劣化,” 色材 63(11), pp.677-684 (1990).

[73] 岡本隆之, 梶川浩太郎, “プラズモニクス 基礎と応用” (講談社, 2011).

[74] 梶川浩太郎, 岡本隆之, 高原淳一, 岡本晃一, “アクティブプラズモニクス” (コロナ社, 2013).

[75] M. Quinten, “Local fields and pointing vectors in the vicinity of the surface of small spherical particles,” Z. Phys. D. 35, pp.217-224 (1995).

[76] A. C. Templeton, J. J. Pietron, R. W. Murray, and P. Mulvaney, “Solvent Refractive Index and Core Charge Influences on the Surface Plasmon Absorbance of Alkanethiolate Monolayer- Protected Gold Clusters,” J. Phys. Chem. B 104(3), pp.564-570 (2000).

[77] G. Baffou and R. Quidant, “Thermo-plasmonics: using metallic nanostructures as nano-sources of heat,” Laser Photonics Rev. 7(2), pp.171-187 (2013).

[78] Y. Chen, H. Wu, Z. Li, P. Wang, L. Yang, and Y. Fang, “The study of surface plasmon in Au/Ag core-shell compound nanoparticles,” Plasmonics 7, pp.509-513 (2012).

[79] I. Shmarakov, I. Mukha, N. Vityuk, V. Borschovetska, N. Zhyshchynska, G. Grodzyuk, and A. Eremenko, “Antitumor activity of alloy and core-shell-type bimetallic AgAu nanoparticles,” Nanoscale Res. Lett. 12(333), pp.1-10 (2017).

参考文献 第 3 章

[1] S. Maruo and T. Saeki, “Femtosecond laser direct writing of metallic microstructures by photoreduction of silver nitrate in a polymer matrix,” Opt. Express 16(2), pp. 1174-1179 (2008).

[2] Y.-L. Sun, Q. Li, S.-M. Sun, J.-C. Huang, B.-Y. Zheng, Q.-D. Chen, Z.-S. Shao, and H.-B. Sun, “Aqueous multiphoton lithography with multifunctional silk-centred bio-resists,” Nat. Commun. 6(8612), pp.1-10 (2015).

[3] K. Vora, S. Y. Kang, S. Shukla, and E. Mazur, “Fabrication of disconnected three-dimensional silver nanostructures in a polymer matrix,” Appl. Phys. Lett. 100(063120), pp.1-3 (2012).

[4] S. Y. Kang, K. Vora, and E. Mazur, “One-step direct-laser metal writing of sub- 100nm 3D silver nanostructures in a gelatin matrix,” Nanotechnology 26(121001), pp.1-6 (2015).

[5] M. J. Low. H. Lee, C. H. J. Lim, C. S. S. Sandeep, V. M. Murukeshan, S.-W. Kim, and Y.-J. Kim, “Laser-induced reduced-graphene-oxide micro-optics patterned by T femtosecond laser direct writing,” Appl. Surf. Sci. 526(146647), pp.1-10 (2020).

[6] J.-J. Park, X. Bulliard, J. M. Lee, J. Hur, K. Im, J.-M. Kim, P. Prabhakaran, N. Cho, K.-S. Lee, S.-Y. Min, T.-W. Lee, S. Yong, and D.-Y. Yang, “Pattern Formation of Silver Nanoparticles in 1-, 2-, and 3D Microstructures Fabricated by a Photo- and Thermal Reduction Method,” Adv. Funct. Mater. 20, pp.2296-2302 (2010).

[7] Y. Niidome, A. T. Haine, and T. Niidome, “Anisotropic gold-based nanoparticles: preparation, properties, and applications,” Chem. Lett. 45(5), pp. 488-498 (2016).

[8] K. Kyaw, H. Ichimaru, T. Kawagoe, M. Terakawa, Y. Miyazawa, D. Mizoguchi, M. Tsushida, and T. Niidome, “Effects of pulsed laser irradiation on gold-coated silver nanoplates and their antibacterial activity,” Nanoscale 9(41), pp.16101-16105 (2017).

[9] A. Cavallo, M. Madaghiele, U. Masullo, M. G. Lionetto, and A. Sannino, “Photo-crosslinked poly(ethylene glycol) diacrylate (PEGDA) hydrogels from low molecular weight prepolymer: Swelling and permeation studies,” J. Appl. Polym. Sci. 134(2), 44380 pp.1-9 (2017).

[10] S. Lim. N. Sangaj, T. Razafiarison, C. Zhang, and S. Varghese, “Influence of Physical Properties of Biomaterials on Cellular Behavior,” Pharm. Res. 28, pp.1422-1430 (2011).

[11] C. J. Orendorff, T. K. Sau, and C. J. Murphy, “Shape-dependent plasmon-resonant gold nanoparticles,” Small 2(5), pp.636-639 (2006).

[12] S. Agnihotri, S. Mukherji, and S. Mukherji, “Size-controlled silver nanoparticles synthesized over the range 5-100 nm using the same protocol and their antibacterial efficacy,” RSC. Adv. 4, pp.3974-3983 (2014).

[13] B. Liedberg, I. Lundström, and E. Stenberg, “Principles of biosensing with an extended coupling matrix and surface plasmon resonance,” Sens. Actuators B Chem. 11(1-3), pp.63-72 (1993).

[14] Z. Hosseinidoust, M. Basnet. T. G. M. van de Ven, and N. Tufenkji, “One-pot green synthesis of anisotropic silver nanoparticles,” Environ. Sci. Nano 3(6), pp. 1259-1264 (2016).

参考文献 第 4 章

[1] E. Hecht, Optics 4th Edition pp. 476-485 (Addison Wesley, 2002).

[2] N. G. Quilis, M. van Dongen, P. Venugopalan, D. Kotlarek, C. Petri, A. M. Cencerrado, S. Stanescu, J. L. T. Herrera, U. Jonas, M. Möller, A. Mourran, and J. Dostalek, “Actively Tunable Collective Localized Surface Plasmons by Responsive Hydrogel Membrane,” Adv. Optical Mater. 7(1900342), pp.1-11 (2019).

[3] Y. Yuan, X. Yang, D. Gong, F. Liu, W. Hu, W. Cai, J. Huang, and M. Yang, “Investigation for terminal reflection optical fiber SPR glucose sensor and glucose sensitive membrane with immobilized GODs,” Opt. Express 25(4), pp.3884-3898 (2017).

[4] C. Kroh, R. Wuchrer, N. Steinke, M. Guenther, G. Gerlach, and T. Härtling, “Hydrogel-based plasmonic sensor substrate for the detection of ethanol,” Sensors 19(1264), pp.1-10 (2019).

[5] J. P. Monteiro, S. M. Predabon, C. T. P. da Silva, E. Radovanovic, and E. M. Girotto, “Plasmonic device based on a PAAm hydrogel/gold nanoparticles composite,” J. Appl. Polym. Sci. 132(34) pp.1-6 (2015).

参考文献 第 5 章

[1] Y.-Y. Cao, N. Takeyasu, T. Tanaka, X.-M. Duan, and S. Kawata, “3D metallic nanostructure fabrication by surfactant-assisted multiphoton-induced reduction,” Small 5(10), pp. 1144-1148 (2009).

[2] X.-L. Ren, M.-L. Zheng, F. Jin, Y.-Y. Zhao, X.-Z. Dong, J. Liu, H. Yu, X.-M. Duan, and Z.-S. Zhao, “Laser direct writing of silver nanowire with amino acids-assisted multiphoton photoreduction,” J. Phys. Chem. C 120(46), pp.26532-26538 (2016).

[3] Y.-Y. Cao, X.-Z. Dong, N. Takeyasu, T. Tanaka, Z.-S. Zhao, X.-M. Duan, and S. Kawata, “Morphology and size dependence of silver microstructures in fatty salts-assisted multiphoton photoreduction microfabrication,” Appl. Phys. A 96(2), pp.453-458 (2009).

[4] W.-E. Lu, Y.-L. Zhang, M.-L. Zheng, Y.-P. Jia, J. Liu, X.-Z. Dong, Z.-S. Zhao, C.-B. Li, Y. Xia, T.-C. Ye, and X.-M. Duan, “Femtosecond direct laser writing of gold nanostructures by ionic liquid assisted multiphoton photoreduction,” Opt. Mater. Express 3(10), pp.1660-1673 (2013).

[5] S. Tabrizi, Y. Cao, B. P. Cumming, B. Jia, and M. Gu, “Functional optical plasmonic resonators fabricated via highly photosensitive direct laser reduction,”Adv. Opt. Mater. 4(4), pp.529-533 (2016)

[6] N. Tosa, J. Bosson, G. Vitrant, P. Baldeck, and O. Stephan, “Fabrication of metallic nanowires by two-photon absorption,” Sci. St. Research VII(4), pp.899-904 (2006).

[7] N. Tosa, J. Bosson, M. Pierre, C. Rambaud, M. Bouriau, G. Vitrant, O. Stephan, S. Astilean, and P. L. Baldeck, “Optical properties of metallic nanostructures fabricated by two-photon induced photoreduction,” Proc. SPIE 6195(619501), pp.1-8 (2006).

[8] K. Terzaki, N. Vasilantonakis, A. Gaidukeviciute, C. Reinhardt, C. Fotakis, M. Vamvakaki, and M. Farsari, “3D conducting nanostructures fabricated using direct laser writing,” Opt. Mater. Express 1(4), pp.586-597 (2011).

[9] S. Shukla, X. Vidal, E. P. Furlani, M. T. Swihart, K.-T. Kim, Y.-K. Yoon, A. Urbas, and P. N. Prasad, “Subwavelength direct laser patterning of conductive gold nanostructures by simultaneous photopolymerization and photoreduction,” ACS Nano 5(3), pp.1947-1957 (2011). [10] A. Ishikawa, T. Tanaka, and S. Kawata, “Improvement in the reduction of silver ions in aqueous solution using two-photon sensitive dye,” Appl. Phys. Lett. 89(11), 113102 (2006).

[11] E. A. Slyusareva, M. A. Gerasimov, A. G. Sizykh, and L. M. Gornostaev, “Spectral and fluorescent indication of the acid-base properties of biopolymer solutions,” Russ. Phys. J. 54(4), pp.485-492 (2011).

[12] D. Fogg, M. David, and K. Goodson, “Non-invasive measurement of viod fraction and liquid temperature in microchannel flow boiling,” Exp. Fluids 46, pp.725-736 (2009).

[13] C. J. Orendorff, T. K. Sau, and C. J. Murphy, “Shape-dependent plasmon-resonant gold nanoparticles,” Small 2(5), pp.636-639 (2006).

[14] L. Marcu, W. S. Grundfest, and J.-M. I. Maarek, “Photobleaching of arterial fluorescent compounds: Characterization of elastin, collagen, and cholesterol time-resolved spectra during prolonged ultraviolet irradiation,” 69(6), pp. 713-721 (1999).

[15] 中澄博行, “色素の退色劣化,” 色材 63(11), pp.677-684 (1990).

[16] H. N. Po and N. M. Senozan, “The Henderson-Hasselbalch equation: its history and limitations,” J. Chem. Educ. 78(11), pp.1499-1503 (2001).

[17] L. Li, G. Rao, X. Lv, R. Chen, X. Cheng, X. Wang, S. Zeng, and X. Liu, “Chemical reactivation of fluorescein isothiocyanate immunofluorescence- labeled resin-embedded samples,” J. Biomed. Opt. 23(2), pp.020501-1-4 (2018).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る