リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Chiral variant and invariant components of the nucleon mass with quark-hadron crossover in neutron stars」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Chiral variant and invariant components of the nucleon mass with quark-hadron crossover in neutron stars

南川, 拓哉 名古屋大学

2023.06.23

概要

学位報告4

別紙4
報 告 番























論文題目
Chiral variant and invariant components of the nucleon mass with
quark-hadron crossover in neutron stars
(中性子星におけるクォーク・ハドロン・クロスオーバーと、核子質
量のカイラル依存・非依存成分)


南川 拓哉

論 文 内 容 の 要 旨
身の回りの物質を分解すると核子に行き着く。核子はさらにクォークからなるが、
その生成過程の解析は理論的な困難を抱える。質量をはじめとした核子の詳細な性
質に対して新しい理解を得ることは、原子核物理における重要な課題である。
核子質量は、カイラル対称性と密接に関わる。真空におけるカイラル対称性の自発
的破れという機構による質量生成に加え、それとは独立な質量成分の存在も示唆され
ている。カイラル対称性は高温・高密度環境下で回復すると考えられており、重イオ
ン衝突実験や中性子星観測が質量の理解に繋がる。申請者は、近年著しく発達した中
性子星観測によるデータと照らし合わせることで、核子質量の性質について調べるこ
とを目的とした。
核子の内部構造は、核子を構成するクォークやグルーオンといった素粒子の持つ非
摂動性のため、その詳細が明らかになっていない。核子の質量を担うエネルギー源と
して、ヒッグス粒子によるクォーク質量は 1%程度と小さい。真空においては、クォ
ーク・反クォーク対によって引き起こされるカイラル対称性の自発的破れという機構
で残りの 99%を説明することが出来る。一方で、カイラル対称性に依存しない、別の
質量成分が比較的大きく存在することが示唆されており、ここではカイラル不変質量
と呼ぶ。カイラル対称性は高温・高密度で回復すると考えられており、それに伴いハ
ドロンの性質も大きく変化しうる。カイラル不変質量の大きさは、こうした高温・高
密度環境下の物理に大きな影響を与えると考えられる。

学位関係

申請者は、中性子星の観測データと照らし合わせることで、カイラル不変質量の取
りうる値を調べた。カイラル不変質量を取り扱うハドロン有効模型として、パリティ
二重項模型を用いた。一方で、中性子星内部では標準原子核密度の数倍以上にも達し
うると考えられており、こうした極限的な高密度環境下ではハドロン間のクォーク交
換相互作用が無数に行われ、もはやクォーク描像が成り立つと考えられている。また、
中性子星の半径のデータや最大質量のデータから、クォーク・ハドロン・クロスオー
バーが示唆されている。申請者は、これらの描像に基づく有効模型や計算手法を組み
合わせ、観測データと整合するカイラル不変質量の値を調べた。その結果、少なくと
も 50%、多いと 90%以上の大きい割合をカイラル不変質量が占めるという結果を得た。
申請者は、さらに、クロスオーバーにおけるカイラル凝縮の振る舞いを定性的に調
べた。ハドロン相やクォーク相とは異なり、クロスオーバー領域においては微視的な
描像に基づく模型を作ることは難しい。そこで、ハドロン相とクォーク相でそれぞれ
計算した状態方程式を、物理的な条件のもと内挿するという手法が用いられる。この
方法では、圧力とエネルギー密度のみが計算される。申請者は、内挿された状態方程
式を分配汎函数として拡張することで、クロスオーバー領域におけるカイラル凝縮や
ダイクォーク凝縮、各粒子の数密度といった物理量の数値的な計算手法を提案し、実
際にその振る舞いを得た。この結果から定性的な振る舞いを議論でき、また将来模型
を拡張する際の指標となる。さらに、今回得られたカイラル凝縮の振る舞いから、カ
イラル凝縮の空間的な分布を議論することが出来ることが分かった。
申請者は、中性子星内部のクォーク・ハドロン・クロスオーバー描像のもと、中性
子星の観測データと照らし合わせることで、核子質量の主な構成要素であるカイラル
凝縮とカイラル不変質量の定性的な振る舞いを調べた。特に、カイラル不変質量は核
子質量の半分以上を占めるという結果や、カイラル凝縮は高密度で緩やかに 0 に近づ
き、そこからカイラル凝縮の空間分布を議論できるという結果を得た。

この論文で使われている画像

参考文献

[1] Takuya Minamikawa, Toru Kojo, and Masayasu Harada. Quark-hadron

crossover equations of state for neutron stars: constraining the chiral

invariant mass in a parity doublet model. Phys. Rev. C, 103(4):045205,

2021.

[2] Takuya Minamikawa, Toru Kojo, and Masayasu Harada. Chiral condensates for neutron stars in hadron-quark crossover: From a parity

doublet nucleon model to a Nambu–Jona-Lasinio quark model. Phys.

Rev. C, 104(6):065201, 2021.

[3] Yoichiro Nambu and G. Jona-Lasinio. Dynamical Model of Elementary

Particles Based on an Analogy with Superconductivity. 1. Phys. Rev.,

122:345–358, 1961.

[4] Yoichiro Nambu and G. Jona-Lasinio. DYNAMICAL MODEL OF

ELEMENTARY PARTICLES BASED ON AN ANALOGY WITH SUPERCONDUCTIVITY. II. Phys. Rev., 124:246–254, 1961.

[5] Carleton E. Detar and Teiji Kunihiro. Linear σ Model With Parity

Doubling. Phys. Rev. D, 39:2805, 1989.

[6] Gert Aarts, Chris Allton, Simon Hands, Benjamin J¨ager, Chrisanthi

Praki, and Jon-Ivar Skullerud. Nucleons and parity doubling across

the deconfinement transition. Phys. Rev. D, 92(1):014503, 2015.

[7] Gert Aarts, Chris Allton, Davide De Boni, Simon Hands, Benjamin

J¨ager, Chrisanthi Praki, and Jon-Ivar Skullerud. Light baryons below

and above the deconfinement transition: medium effects and parity

doubling. JHEP, 06:034, 2017.

86

[8] Gert Aarts, Chris Allton, Davide de Boni, Simon Hands, Benjamin

J¨ager, Chrisanthi Praki, and Jon-Ivar Skullerud. Baryons in the

plasma: in-medium effects and parity doubling. EPJ Web Conf.,

171:14005, 2018.

[9] Gert Aarts, Chris Allton, Davide De Boni, and Benjamin J¨ager. Hyperons in thermal QCD: A lattice view. Phys. Rev. D, 99(7):074503,

2019.

[10] Gert Aarts, Chris Allton, Davide de Boni, Jonas Glesaaen, Simon

Hands, Benjamin J¨ager, and Jon-Ivar Skullerud. Hyperons in thermal QCD from the lattice. Springer Proc. Phys., 250:29–35, 2020.

[11] D. Jido, Y. Nemoto, M. Oka, and A. Hosaka. Chiral symmetry for

positive and negative parity nucleons. Nucl. Phys. A, 671:471–480,

2000.

[12] D. Jido, T. Hatsuda, and T. Kunihiro. Chiral symmetry realization

for even parity and odd parity baryon resonances. Phys. Rev. Lett.,

84:3252, 2000.

[13] Daisuke Jido, Makoto Oka, and Atsushi Hosaka. Chiral symmetry of

baryons. Prog. Theor. Phys., 106:873–908, 2001.

[14] K. Nagata, A. Hosaka, and V. Dmitrasinovic. pi N and pi pi N Couplings of the Delta(1232) and its Chiral Partners. Phys. Rev. Lett.,

101:092001, 2008.

[15] Susanna Gallas, Francesco Giacosa, and Dirk H. Rischke. Vacuum

phenomenology of the chiral partner of the nucleon in a linear sigma

model with vector mesons. Phys. Rev. D, 82:014004, 2010.

[16] Susanna Gallas and Francesco Giacosa. Mirror versus naive assignment

in chiral models for the nucleon. Int. J. Mod. Phys. A, 29(17):1450098,

2014.

[17] P. B. Demorest, T. Pennucci, S. M. Ransom, M. S. E. Roberts, and

J. W. T. Hessels. A two-solar-mass neutron star measured using shapiro

delay. Nature, 467(7319):1081–1083, Oct 2010.

87

[18] B. P. Abbott et al. GW170817: Observation of Gravitational Waves

from a Binary Neutron Star Inspiral. Phys. Rev. Lett., 119(16):161101,

2017.

[19] B. P. Abbott et al. GW170817: Measurements of neutron star radii

and equation of state. Phys. Rev. Lett., 121(16):161101, 2018.

[20] B. P. Abbott et al. Multi-messenger Observations of a Binary Neutron

Star Merger. Astrophys. J. Lett., 848(2):L12, 2017.

[21] M. C. Miller et al. PSR J0030+0451 Mass and Radius from N ICER

Data and Implications for the Properties of Neutron Star Matter.

Astrophys. J. Lett., 887(1):L24, 2019.

[22] Thomas E. Riley et al. A N ICER View of PSR J0030+0451: Millisecond Pulsar Parameter Estimation. Astrophys. J. Lett., 887(1):L21,

2019.

[23] Thomas E. Riley et al. A NICER View of the Massive Pulsar

PSR J0740+6620 Informed by Radio Timing and XMM-Newton Spectroscopy. Astrophys. J. Lett., 918(2):L27, 2021.

[24] M. C. Miller et al. The Radius of PSR J0740+6620 from NICER and

XMM-Newton Data. Astrophys. J. Lett., 918(2):L28, 2021.

[25] T. Hatsuda and M. Prakash. Parity Doubling of the Nucleon and First

Order Chiral Transition in Dense Matter. Phys. Lett. B, 224:11–15,

1989.

[26] D. Zschiesche, L. Tolos, Jurgen Schaffner-Bielich, and Robert D. Pisarski. Cold, dense nuclear matter in a SU(2) parity doublet model.

Phys. Rev. C, 75:055202, 2007.

[27] V. Dexheimer, S. Schramm, and D. Zschiesche. Nuclear matter and

neutron stars in a parity doublet model. Phys. Rev. C, 77:025803,

2008.

[28] V. Dexheimer, G. Pagliara, L. Tolos, J. Schaffner-Bielich, and

S. Schramm. Neutron stars within the SU(2) parity doublet model.

Eur. Phys. J. A, 38:105–113, 2008.

88

[29] Chihiro Sasaki and Igor Mishustin. Thermodynamics of dense hadronic

matter in a parity doublet model. Phys. Rev. C, 82:035204, 2010.

[30] Chihiro Sasaki, Hyun Kyu Lee, Won-Gi Paeng, and Mannque Rho.

Conformal anomaly and the vector coupling in dense matter. Phys.

Rev. D, 84:034011, 2011.

[31] Susanna Gallas, Francesco Giacosa, and Giuseppe Pagliara. Nuclear

matter within a dilatation-invariant parity doublet model: the role of

the tetraquark at nonzero density. Nucl. Phys. A, 872:13–24, 2011.

[32] Won-Gi Paeng, Hyun Kyu Lee, Mannque Rho, and Chihiro Sasaki.

Dilaton-Limit Fixed Point in Hidden Local Symmetric Parity Doublet

Model. Phys. Rev. D, 85:054022, 2012.

[33] J. Steinheimer, S. Schramm, and H. Stocker. The hadronic SU(3)

Parity Doublet Model for Dense Matter, its extension to quarks and

the strange equation of state. Phys. Rev. C, 84:045208, 2011.

[34] V. Dexheimer, J. Steinheimer, R. Negreiros, and S. Schramm. Hybrid

Stars in an SU(3) parity doublet model. Phys. Rev. C, 87(1):015804,

2013.

[35] Won-Gi Paeng, Hyun Kyu Lee, Mannque Rho, and Chihiro Sasaki.

Interplay between ω-nucleon interaction and nucleon mass in dense

baryonic matter. Phys. Rev. D, 88:105019, 2013.

[36] Achim Heinz, Francesco Giacosa, and Dirk H. Rischke. Chiral density

wave in nuclear matter. Nucl. Phys. A, 933:34–42, 2015.

[37] Yuichi Motohiro, Youngman Kim, and Masayasu Harada. Asymmetric

nuclear matter in a parity doublet model with hidden local symmetry.

Phys. Rev. C, 92(2):025201, 2015. [Erratum: Phys.Rev.C 95, 059903

(2017)].

[38] Sanjin Benic, Igor Mishustin, and Chihiro Sasaki. Effective model for

the QCD phase transitions at finite baryon density. Phys. Rev. D,

91(12):125034, 2015.

[39] A. Mukherjee, J. Steinheimer, and S. Schramm. Higher-order baryon

number susceptibilities: interplay between the chiral and the nuclear

liquid-gas transitions. Phys. Rev. C, 96(2):025205, 2017.

89

[40] A. Mukherjee, S. Schramm, J. Steinheimer, and V. Dexheimer. The application of the Quark-Hadron Chiral Parity-Doublet Model to neutron

star matter. Astron. Astrophys., 608:A110, 2017.

[41] Daiki Suenaga. Examination of N ∗ (1535) as a probe to observe the

partial restoration of chiral symmetry in nuclear matter. Phys. Rev.

C, 97(4):045203, 2018.

[42] Yusuke Takeda, Youngman Kim, and Masayasu Harada. Catalysis

of partial chiral symmetry restoration by ∆ matter. Phys. Rev. C,

97(6):065202, 2018.

[43] Michal Marczenko and Chihiro Sasaki. Net-baryon number fluctuations

in the Hybrid Quark-Meson-Nucleon model at finite density. Phys. Rev.

D, 97(3):036011, 2018.

[44] Won-Gi Paeng, Thomas T. S. Kuo, Hyun Kyu Lee, Yong-Liang Ma,

and Mannque Rho. Scale-invariant hidden local symmetry, topology

change, and dense baryonic matter. II. Phys. Rev. D, 96(1):014031,

2017.

[45] Michal Marczenko, David Blaschke, Krzysztof Redlich, and Chihiro

Sasaki. Chiral symmetry restoration by parity doubling and the structure of neutron stars. Phys. Rev. D, 98(10):103021, 2018.

[46] Hiroaki Abuki, Yusuke Takeda, and Masayasu Harada. Dual chiral

density waves in nuclear matter. EPJ Web Conf., 192:00020, 2018.

[47] Yusuke Takeda, Hiroaki Abuki, and Masayasu Harada. Novel dual chiral density wave in nuclear matter based on a parity doublet structure.

Phys. Rev. D, 97(9):094032, 2018.

[48] Takahiro Yamazaki and Masayasu Harada. Constraint to chiral invariant masses of nucleons from GW170817 in an extended parity doublet

model. Phys. Rev. C, 100(2):025205, 2019.

[49] Masayasu Harada and Takahiro Yamazaki. Charmed Mesons in Nuclear

Matter Based on Chiral Effective Models. JPS Conf. Proc., 26:024001,

2019.

90

[50] Michal Marczenko, David Blaschke, Krzysztof Redlich, and Chihiro

Sasaki. Parity Doubling and the Dense Matter Phase Diagram under Constraints from Multi-Messenger Astronomy. Universe, 5(8):180,

2019.

[51] Masayasu Harada.

Dense nuclear matter based on

a chiral model with parity doublet structure.

In

18th International Conference on Hadron Spectroscopy and Structure,

pages 661–666, 2020.

[52] Michal Marczenko, David Blaschke, Krzysztof Redlich, and Chihiro

Sasaki. Toward a unified equation of state for multi-messenger astronomy. Astron. Astrophys., 643:A82, 2020.

[53] Michal Marczenko. Speed of sound and quark confinement inside neutron stars. Eur. Phys. J. ST, 229(22-23):3651–3661, 2020.

[54] Michal

Marczenko.

Hybrid

quark-hadron

tion

of

state

for

multi-messenger

astronomy.

Criticality in QCD and the Hadron Resonance Gas, 10 2020.

equaIn

[55] Michal Marczenko, Krzysztof Redlich, and Chihiro Sasaki. Interplay

between chiral dynamics and repulsive interactions in hot hadronic

matter. Phys. Rev. D, 103(5):054035, 2021.

[56] Michal Marczenko, Krzysztof Redlich, and Chihiro Sasaki. Reconciling Multi-messenger Constraints with Chiral Symmetry Restoration.

Astrophys. J. Lett., 925(2):L23, 2022.

[57] Michal Marczenko, Krzysztof Redlich, and Chihiro Sasaki. Chiral symmetry restoration and ∆ matter formation in neutron stars. Phys. Rev.

D, 105(10):103009, 2022.

[58] Kota Masuda, Tetsuo Hatsuda, and Tatsuyuki Takatsuka. HadronQuark Crossover and Massive Hybrid Stars with Strangeness.

Astrophys. J., 764:12, 2013.

[59] Kota Masuda, Tetsuo Hatsuda, and Tatsuyuki Takatsuka.

Hadron–quark crossover and massive hybrid stars.

PTEP,

2013(7):073D01, 2013.

91

[60] Gordon Baym, Tetsuo Hatsuda, Toru Kojo, Philip D. Powell, Yifan

Song, and Tatsuyuki Takatsuka. From hadrons to quarks in neutron

stars: a review. Rept. Prog. Phys., 81(5):056902, 2018.

[61] Gordon Baym, Shun Furusawa, Tetsuo Hatsuda, Toru Kojo, and Hajime Togashi. New Neutron Star Equation of State with Quark-Hadron

Crossover. Astrophys. J., 885:42, 2019.

[62] Tetsuo Hatsuda and Teiji Kunihiro. QCD phenomenology based on a

chiral effective Lagrangian. Phys. Rept., 247:221–367, 1994.

[63] Szabocls Borsanyi, Zoltan Fodor, Christian Hoelbling, Sandor D. Katz,

Stefan Krieg, and Kalman K. Szabo. Full result for the QCD equation

of state with 2+1 flavors. Phys. Lett. B, 730:99–104, 2014.

[64] A. Bazavov et al. Equation of state in ( 2+1 )-flavor QCD. Phys. Rev.

D, 90:094503, 2014.

[65] V. Vovchenko, D. V. Anchishkin, and M. I. Gorenstein. Hadron Resonance Gas Equation of State from Lattice QCD. Phys. Rev. C,

91(2):024905, 2015.

[66] E. E. Kolomeitsev, K. A. Maslov, and D. N. Voskresensky. Hyperon

puzzle and the RMF model with scaled hadron masses and coupling

constants. J. Phys. Conf. Ser., 668(1):012064, 2016.

[67] Ingo Tews, James M. Lattimer, Akira Ohnishi, and Evgeni E.

Kolomeitsev. Symmetry Parameter Constraints from a Lower Bound

on Neutron-matter Energy. Astrophys. J., 848(2):105, 2017.

[68] C. Drischler, R. J. Furnstahl, J. A. Melendez, and D. R. Phillips. How

Well Do We Know the Neutron-Matter Equation of State at the Densities Inside Neutron Stars? A Bayesian Approach with Correlated

Uncertainties. Phys. Rev. Lett., 125(20):202702, 2020.

[69] Bao-An Li, Bao-Jun Cai, Wen-Jie Xie, and Nai-Bo Zhang. Progress in

Constraining Nuclear Symmetry Energy Using Neutron Star Observables Since GW170817. Universe, 7(6):182, 2021.

[70] H. T. Cromartie et al. Relativistic Shapiro delay measurements of

an extremely massive millisecond pulsar. Nature Astron., 4(1):72–76,

2019.

92

[71] Toru Kojo. QCD equations of state and speed of sound in neutron

stars. AAPPS Bull., 31(1):11, 2021.

[72] Zaven Arzoumanian et al. The NANOGrav 11-year Data Set: Highprecision timing of 45 Millisecond Pulsars. Astrophys. J. Suppl.,

235(2):37, 2018.

[73] Emmanuel Fonseca et al. The NANOGrav Nine-year Data Set:

Mass and Geometric Measurements of Binary Millisecond Pulsars.

Astrophys. J., 832(2):167, 2016.

[74] Paul Demorest, Tim Pennucci, Scott Ransom, Mallory Roberts, and

Jason Hessels. Shapiro Delay Measurement of A Two Solar Mass Neutron Star. Nature, 467:1081–1083, 2010.

[75] John Antoniadis et al. A Massive Pulsar in a Compact Relativistic

Binary. Science, 340:6131, 2013.

[76] E. Fonseca et al. Refined Mass and Geometric Measurements of the

High-mass PSR J0740+6620. Astrophys. J. Lett., 915(1):L12, 2021.

[77] G. Raaijmakers, S. K. Greif, K. Hebeler, T. Hinderer, S. Nissanke,

A. Schwenk, T. E. Riley, A. L. Watts, J. M. Lattimer, and W. C. G. Ho.

Constraints on the Dense Matter Equation of State and Neutron Star

Properties from NICER’s Mass–Radius Estimate of PSR J0740+6620

and Multimessenger Observations. Astrophys. J. Lett., 918(2):L29,

2021.

[78] J. D. Walecka. A Theory of highly condensed matter. Annals Phys.,

83:491–529, 1974.

[79] Brian D. Serot and John Dirk Walecka. The Relativistic Nuclear Many

Body Problem. Adv. Nucl. Phys., 16:1–327, 1986.

[80] Brian D. Serot and John Dirk Walecka. Recent progress in quantum

hadrodynamics. Int. J. Mod. Phys. E, 6:515–631, 1997.

[81] Takahiro Yamazaki and Masayasu Harada. Chiral partner structure

of light nucleons in an extended parity doublet model. Phys. Rev. D,

99(3):034012, 2019.

93

[82] Toru Kojo, Philip D. Powell, Yifan Song, and Gordon Baym. Phenomenological QCD equation of state for massive neutron stars. Phys.

Rev. D, 91(4):045003, 2015.

[83] Masakiyo Kitazawa, Tomoi Koide, Teiji Kunihiro, and Yukio Nemoto.

Chiral and color superconducting phase transitions with vector interaction in a simple model. Prog. Theor. Phys., 108(5):929–951, 2002.

[Erratum: Prog.Theor.Phys. 110, 185–186 (2003)].

[84] Nino M. Bratovic, Tetsuo Hatsuda, and Wolfram Weise. Role of Vector

Interaction and Axial Anomaly in the PNJL Modeling of the QCD

Phase Diagram. Phys. Lett. B, 719:131–135, 2013.

[85] Mark G. Alford, Andreas Schmitt, Krishna Rajagopal, and Thomas

Sch¨afer. Color superconductivity in dense quark matter. Rev. Mod.

Phys., 80:1455–1515, 2008.

[86] Kota Masuda, Tetsuo Hatsuda, and Tatsuyuki Takatsuka. Hyperon

Puzzle, Hadron-Quark Crossover and Massive Neutron Stars. Eur.

Phys. J. A, 52(3):65, 2016.

[87] Kenji Fukushima and Toru Kojo. The Quarkyonic Star. Astrophys. J.,

817(2):180, 2016.

[88] Masako Bando, Taichiro Kugo, and Koichi Yamawaki. Nonlinear Realization and Hidden Local Symmetries. Phys. Rept., 164:217–314,

1988.

[89] Masayasu Harada and Koichi Yamawaki. Hidden local symmetry at

loop: A New perspective of composite gauge boson and chiral phase

transition. Phys. Rept., 381:1–233, 2003.

[90] Michael Buballa. NJL model analysis of quark matter at large density.

Phys. Rept., 407:205–376, 2005.

[91] Richard C. Tolman. Static solutions of Einstein’s field equations for

spheres of fluid. Phys. Rev., 55:364–373, 1939.

[92] J. R. Oppenheimer and G. M. Volkoff. On massive neutron cores. Phys.

Rev., 55:374–381, 1939.

94

[93] Gordon Baym, Christopher Pethick, and Peter Sutherland. The

Ground state of matter at high densities: Equation of state and stellar

models. Astrophys. J., 170:299–317, 1971.

[94] Soumi De, Daniel Finstad, James M. Lattimer, Duncan A. Brown, Edo

Berger, and Christopher M. Biwer. Tidal Deformabilities and Radii of

Neutron Stars from the Observation of GW170817. Phys. Rev. Lett.,

121(9):091102, 2018. [Erratum: Phys.Rev.Lett. 121, 259902 (2018)].

[95] David Radice, Albino Perego, Francesco Zappa, and Sebastiano

Bernuzzi. GW170817: Joint Constraint on the Neutron Star Equation of State from Multimessenger Observations. Astrophys. J. Lett.,

852(2):L29, 2018.

[96] Yifan Song, Gordon Baym, Tetsuo Hatsuda, and Toru Kojo. Effective

repulsion in dense quark matter from nonperturbative gluon exchange.

Phys. Rev. D, 100(3):034018, 2019.

[97] Philipp Gubler and Daisuke Satow. Recent Progress in QCD Condensate Evaluations and Sum Rules. Prog. Part. Nucl. Phys., 106:1–67,

2019.

[98] J. Gasser, H. Leutwyler, and M. E. Sainio. Sigma term update. Phys.

Lett. B, 253:252–259, 1991.

[99] N. Kaiser, P. de Homont, and W. Weise. In-medium chiral condensate

beyond linear density approximation. Phys. Rev. C, 77:025204, 2008.

[100] N. Kaiser and W. Weise. Chiral condensate in neutron matter. Phys.

Lett. B, 671:25–29, 2009.

[101] Matthias Drews and Wolfram Weise. Functional renormalization group

studies of nuclear and neutron matter. Prog. Part. Nucl. Phys., 93:69–

107, 2017.

[102] F. Karsch, K. Redlich, and A. Tawfik. Thermodynamics at nonzero

baryon number density: A Comparison of lattice and hadron resonance

gas model calculations. Phys. Lett. B, 571:67–74, 2003.

[103] Anton Andronic, Peter Braun-Munzinger, Krzysztof Redlich, and Johanna Stachel. Decoding the phase structure of QCD via particle production at high energy. Nature, 561(7723):321–330, 2018.

95

[104] Edward V. Shuryak. Two Scales and Phase Transitions in Quantum

Chromodynamics. Phys. Lett. B, 107:103–105, 1981.

[105] Aneesh Manohar and Howard Georgi. Chiral Quarks and the Nonrelativistic Quark Model. Nucl. Phys. B, 234:189–212, 1984.

[106] Daiki Suenaga and Toru Kojo. Gluon propagator in two-color dense

QCD: Massive Yang-Mills approach at one-loop. Phys. Rev. D,

100(7):076017, 2019.

[107] A. De Rujula, Howard Georgi, and S. L. Glashow. Hadron Masses in

a Gauge Theory. Phys. Rev. D, 12:147–162, 1975.

[108] Aaron Park, Woosung Park, and Su Houng Lee. Tribaryon configurations and the inevitable three nucleon repulsions at short distance.

Phys. Rev. D, 98(3):034001, 2018.

[109] Aaron Park, Su Houng Lee, Takashi Inoue, and Tetsuo Hatsuda.

Baryon–baryon interactions at short distances: constituent quark

model meets lattice QCD. Eur. Phys. J. A, 56(3):93, 2020.

[110] Thomas Sch¨afer and Edward V. Shuryak. Instantons in QCD. Rev.

Mod. Phys., 70:323–426, 1998.

[111] T. H. R. Skyrme. A Nonlinear field theory. Proc. Roy. Soc. Lond. A,

260:127–138, 1961.

[112] Gregory S. Adkins, Chiara R. Nappi, and Edward Witten. Static Properties of Nucleons in the Skyrme Model. Nucl. Phys. B, 228:552, 1983.

[113] Aneesh V. Manohar. Equivalence of the Chiral Soliton and Quark

Models in Large N. Nucl. Phys. B, 248:19, 1984.

[114] S. Kahana, G. Ripka, and V. Soni. Soliton with Valence Quarks in the

Chiral Invariant Sigma Model. Nucl. Phys. A, 415:351–364, 1984.

[115] I. Zahed and G. E. Brown. The Skyrme Model. Phys. Rept., 142:1–102,

1986.

[116] Dmitri Diakonov, V. Yu. Petrov, and P. V. Pobylitsa. A Chiral Theory

of Nucleons. Nucl. Phys. B, 306:809, 1988.

96

[117] Hiroyuki Hata, Tadakatsu Sakai, Shigeki Sugimoto, and Shinichiro

Yamato. Baryons from instantons in holographic QCD. Prog. Theor.

Phys., 117:1157, 2007.

[118] Kanabu Nawa, Hideo Suganuma, and Toru Kojo. Baryons in holographic QCD. Phys. Rev. D, 75:086003, 2007.

[119] Edward Witten.

Nonabelian Bosonization in Two-Dimensions.

Commun. Math. Phys., 92:455–472, 1984.

[120] Edward Witten. Chiral Symmetry, the 1/n Expansion, and the SU(N)

Thirring Model. Nucl. Phys. B, 145:110–118, 1978.

[121] Ian Affleck. On the Realization of Chiral Symmetry in (1+1)dimensions. Nucl. Phys. B, 265:448–468, 1986.

[122] Ian Affleck. Exact Critical Exponents for Quantum Spin Chains, Nonlinear Sigma Models at Theta = pi and the Quantum Hall Effect. Nucl.

Phys. B, 265:409–447, 1986.

[123] Verena Schon and Michael Thies. Emergence of Skyrme crystal in

Gross-Neveu and ’t Hooft models at finite density. Phys. Rev. D,

62:096002, 2000.

[124] Barak Bringoltz. Chiral crystals in strong-coupling lattice QCD at

nonzero chemical potential. JHEP, 03:016, 2007.

[125] Toru Kojo. Chiral Spirals from Noncontinuous Chiral Symmetry: The

Gross-Neveu model results. Phys. Rev. D, 90(6):065030, 2014.

[126] Toru Kojo. A (1+1) dimensional example of Quarkyonic matter. Nucl.

Phys. A, 877:70–94, 2012.

[127] Yong-Liang Ma, Masayasu Harada, Hyun Kyu Lee, Yongseok Oh,

Byung-Yoon Park, and Mannque Rho. Dense baryonic matter in the

hidden local symmetry approach: Half-skyrmions and nucleon mass.

Phys. Rev. D, 88(1):014016, 2013. [Erratum: Phys.Rev.D 88, 079904

(2013)].

[128] Masayasu Harada, Hyun Kyu Lee, Yong-Liang Ma, and Mannque

Rho. Inhomogeneous quark condensate in compressed Skyrmion matter. Phys. Rev. D, 91(9):096011, 2015.

97

[129] Igor R. Klebanov. Nuclear Matter in the Skyrme Model. Nucl. Phys.

B, 262:133–143, 1985.

[130] Mannque Rho, Sang-Jin Sin, and Ismail Zahed. Dense QCD: A Holographic Dyonic Salt. Phys. Lett. B, 689:23–27, 2010.

[131] Keun-Young Kim, Sang-Jin Sin, and Ismail Zahed. Dense holographic

QCD in the Wigner-Seitz approximation. JHEP, 09:001, 2008.

[132] H. Forkel, A. D. Jackson, Mannque Rho, C. Weiss, A. Wirzba, and

H. Bang. Chiral Symmetry Restoration and the Skyrme Model. Nucl.

Phys. A, 504:818–828, 1989.

[133] Kanabu Nawa, Hideo Suganuma, and Toru Kojo. Brane-induced

Skyrmion on S**3: Baryonic matter in holographic QCD. Phys. Rev.

D, 79:026005, 2009.

[134] Michael Buballa and Stefano Carignano. Inhomogeneous chiral condensates. Prog. Part. Nucl. Phys., 81:39–96, 2015.

[135] D. V. Deryagin, Dmitri Yu. Grigoriev, and V. A. Rubakov. Standing

wave ground state in high density, zero temperature QCD at large N(c).

Int. J. Mod. Phys. A, 7:659–681, 1992.

[136] Dominik Nickel. Inhomogeneous phases in the Nambu-Jona-Lasino and

quark-meson model. Phys. Rev. D, 80:074025, 2009.

[137] Stefano Carignano, Dominik Nickel, and Michael Buballa. Influence

of vector interaction and Polyakov loop dynamics on inhomogeneous

chiral symmetry breaking phases. Phys. Rev. D, 82:054009, 2010.

[138] Ralf Rapp, Edward V. Shuryak, and Ismail Zahed. A Chiral crystal in

cold QCD matter at intermediate densities? Phys. Rev. D, 63:034008,

2001.

[139] E. Nakano and T. Tatsumi. Chiral symmetry and density wave in quark

matter. Phys. Rev. D, 71:114006, 2005.

[140] Toru Kojo, Yoshimasa Hidaka, Larry McLerran, and Robert D. Pisarski. Quarkyonic Chiral Spirals. Nucl. Phys. A, 843:37–58, 2010.

98

[141] Toru Kojo, Robert D. Pisarski, and A. M. Tsvelik. Covering the Fermi

Surface with Patches of Quarkyonic Chiral Spirals. Phys. Rev. D,

82:074015, 2010.

[142] Toru Kojo, Yoshimasa Hidaka, Kenji Fukushima, Larry D. McLerran,

and Robert D. Pisarski. Interweaving Chiral Spirals. Nucl. Phys. A,

875:94–138, 2012.

[143] Robert D. Pisarski, Vladimir V. Skokov, and Alexei M. Tsvelik. Fluctuations in cool quark matter and the phase diagram of Quantum Chromodynamics. Phys. Rev. D, 99(7):074025, 2019.

[144] Robert D. Pisarski, Alexei M. Tsvelik, and Semeon Valgushev. How

transverse thermal fluctuations disorder a condensate of chiral spirals

into a quantum spin liquid. Phys. Rev. D, 102(1):016015, 2020.

[145] Yong-Liang Ma and Mannque Rho. Recent progress on dense nuclear matter in skyrmion approaches. Sci. China Phys. Mech. Astron.,

60(3):032001, 2017.

[146] D. Blaschke, T. Klahn, and D. N. Voskresensky. Diquark condensates

and compact star cooling. Astrophys. J., 533:406–412, 2000.

[147] Hovik Grigorian, David Blaschke, and Dmitri Voskresensky. Cooling

of neutron stars with color superconducting quark cores. Phys. Rev.

C, 71:045801, 2005.

[148] Andrew Cumming, Edward F. Brown, Farrukh J. Fattoyev, C. J.

Horowitz, Dany Page, and Sanjay Reddy. A lower limit on the heat

capacity of the neutron star core. Phys. Rev. C, 95(2):025806, 2017.

[149] Hua-Xing Chen, V. Dmitrasinovic, and Atsushi Hosaka. Baryon fields

with U(L)(3) X U(R)(3) chiral symmetry II: Axial currents of nucleons

and hyperons. Phys. Rev. D, 81:054002, 2010.

[150] Hua-Xing Chen, V. Dmitrasinovic, and Atsushi Hosaka. Baryon Fields

with UL (3)timesUR (3) Chiral Symmetry III: Interactions with Chiral

(3, ¯3) + (¯3, 3) Spinless Mesons. Phys. Rev. D, 83:014015, 2011.

99

[151] Hua-Xing Chen, V. Dmitrasinovic, and Atsushi Hosaka.

mathrmBaryonswith UL (3) × UR (3) Chiral Symmetry IV: Interactions with Chiral (8,1) ⊕ (1,8) Vector and Axial-vector Mesons

and Anomalous Magnetic Moments. Phys. Rev. C, 85:055205, 2012.

[152] Hiroki Nishihara and Masayasu Harada. Extended Goldberger-Treiman

relation in a three-flavor parity doublet model. Phys. Rev. D,

92(5):054022, 2015.

[153] Anton Motornenko, Jan Steinheimer, Volodymyr Vovchenko, Stefan

Schramm, and Horst Stoecker. Equation of state for hot QCD and compact stars from a mean field approach. Phys. Rev. C, 101(3):034904,

2020.

[154] Toru Kojo, Defu Hou, Jude Okafor, and Hajime Togashi. Phenomenological QCD equations of state for neutron star dynamics:

Nuclear-2SC continuity and evolving effective couplings. Phys. Rev.

D, 104(6):063036, 2021.

[155] Kenji Fukushima, Toru Kojo, and Wolfram Weise. Hard-core deconfinement and soft-surface delocalization from nuclear to quark matter.

Phys. Rev. D, 102(9):096017, 2020.

[156] Larry McLerran and Sanjay Reddy. Quarkyonic Matter and Neutron

Stars. Phys. Rev. Lett., 122(12):122701, 2019.

[157] Kie Sang Jeong, Larry McLerran, and Srimoyee Sen. Dynamically

generated momentum space shell structure of quarkyonic matter via

an excluded volume model. Phys. Rev. C, 101(3):035201, 2020.

[158] Toru Kojo. Stiffening of matter in quark-hadron continuity. Phys. Rev.

D, 104(7):074005, 2021.

[159] Ingo Tews, Joseph Carlson, Stefano Gandolfi, and Sanjay Reddy. Constraining the speed of sound inside neutron stars with chiral effective

field theory interactions and observations. Astrophys. J., 860(2):149,

2018.

100

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る