リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Frequency synchronization of single flux quantum oscillators」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Frequency synchronization of single flux quantum oscillators

Yuki Yamanashi 70467059 Ryo Kinoshita Nobuyuki Yoshikawa 70202398 横浜国立大学

2021.09.01

概要

We demonstrate the frequency synchronization of multiple single-flux quantum (SFQ) oscillators with different oscillation frequencies. To synchronize these SFQ oscillators, a common constant bias current is supplied to the SFQ oscillators without any bias resistors. When an SFQ oscillator oscillates at a frequency of f, the average voltage across the Josephson junction comprising the SFQ oscillator is fΦ_o, where fΦ_o is the flux quantum in the superconductor. The bias currents supplied to the SFQ oscillators are redistributed to eliminate the average voltage difference output from the SFQ oscillators. As a result, the oscillation frequencies of all the SFQ oscillators are synchronized. Simulation results indicate that SFQ oscillators with an oscillation frequency difference of more than 50 GHz can be synchronized. We experimentally demonstrate the frequency synchronization of two SFQ oscillators composed of circular Josephson transmission lines. Frequency synchronization is expected to contribute toward the development of a low-power stable clock source stabilizing SFQ circuit operation.

参考文献

[1] Likharev K K and Semenov V K 1991 RSFQ logic/memory

family: a new Josephson-junction technology for

sub-terahertz-clock-digital systems IEEE Trans. Appl.

Supercond. 1 3–28

[2] Nakajima K, Mizusawa H, Sugahara H and Sawada Y 1991

Phase mode Josephson computer system IEEE Trans. Appl.

Supercond. 1 29–36

[3] Lin J C and Semenov V K 1995 Timing circuits for RSFQ

digital systems IEEE Trans. Appl. Supercond.

5 3472–7

[4] Mancini C A and Bocko M F 1999 Phase-locked operation of

RSFQ ring oscillators Supercond. Sci. Technol.

12 789–91

[5] Brock D K 2001 RSFQ technology: circuits and systems Int. J.

High Speed Electron. Syst. 11 307–62

[6] Katsuno H, Nagano T, Nakayama K and Yoshida J 2003

HTS-SFQ ring oscillator circuit fabricated with a novel

multilayer structure Phys. C 392–396 1433–40

[7] Deng Z J, Yoshikawa N, Whiteley S R and Van Duzer T 1997

Data-driven self-timed RSFQ digital integrated circuit and

system IEEE Trans. Appl. Supercond. 7 3634–7

[8] Kirichenko A F, Mukhanov O A and Ryzhikh A I 1997

Advanced on-chip test technology for RSFQ circuits IEEE

Trans. Appl. Supercond. 7 3438–41

[9] Kirichenko A F, Kamkar M Y, Walter J and Vernik I V 2019

ERSFQ 8-bit parallel binary shifter for energy-efficient

superconducting CPU IEEE Trans. Appl. Supercond.

29 1302704

[10] Mukhanov O A, Gupta D, Kadin A M and Semenov V J 2004

Superconductor analog-to-digital converters Proc. IEEE

92 1564–84

[11] Suzuki H, Oikawa M, Nishii K, Ishihara K, Fujiwara K,

Maruyama M and Hidaka M 2011 Design and

demonstration of a 5-bit flash-type SFQ A/D converter

integrated with error correction and interleaving circuits

IEEE Trans. Appl. Supercond. 21 671–6

[12] Sano K, Yamanashi Y and Yoshikawa N 2014 Design and

demonstration of a single-flux-quantum multi-stop

time-to-digital converter for time-of-flight mass

spectrometry IEICE Trans. Electron. E97.C 182–7

[13] Tomitsuka Y, Yamanashi Y, Zen N, Ohkubo M and

Yoshikawa N 2019 Demonstration of picosecond time

resolution in double-oscillator time-to-digital converter

using single-flux-quantum circuits IEEE Trans. Appl.

Supercond. 29 1301505

[14] Yamanashi Y and Yoshikawa N 2009 Superconductive random

number generator using thermal noises in SFQ circuits

IEEE Trans. Appl. Supercond. 19 630–3

[15] Sugiura T, Yamanashi Y and Yoshikawa N 2011

Demonstration of 30 Gbit/s generation of superconductive

true random number generator IEEE Trans. Appl.

Supercond. 21 843–6

Supercond. Sci. Technol. 34 (2021) 105004

Y Yamanashi et al

kA cm−2 niobium fabrication process Supercond. Sci.

Technol. 30 035002

[38] Fourie C J, Wetzstein O, Ortlepp T and Kunert J 2011

Three-dimensional multi-terminal superconductive

integrated circuit inductance extraction Supercond. Sci.

Technol. 24 125015

[39] Iwasaki S, Tanaka M, Irie N, Fujimaki A, Yoshikawa N,

Terai H and Yorozu S 2007 Quantitative evaluation of delay

time in the single-flux-quantum circuit Phys. C

463–465 1068–71

[35] Vernik I V and Gupta D 2003 Two-phase 50 GHz on-chip long

Josephson junction clock source IEEE Trans. Appl.

Supercond. 13 587–90

[36] Hidaka M and Nagasawa S 2021 Fabrication process for

superconducting digital circuits IEICE Trans. Electron. to

be published (https://doi.org/10.1587/transele.

2020SUI0002)

[37] Takeuchi N, Nagasawa S, China F, Ando T, Hidaka M,

Yamanashi Y and Yoshikawa N 2017 Adiabatic

quantum-flux-parametron cell library designed using a 10

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る