リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Coupled mode analysis of high-speed transverse coupled cavity vertical-cavity surface-emitting laser for low frequency chirp operations」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Coupled mode analysis of high-speed transverse coupled cavity vertical-cavity surface-emitting laser for low frequency chirp operations

Shanting Hu Fumio Koyama 東京工業大学 DOI:https://doi.org/10.1587/elex.18.20210239

2021.07.10

概要

We demonstrate the modeling and experimental results on the modulation bandwidth and frequency chirp of the transverse coupled cav- ity vertical-cavity surface-emitting lasers (TCC-VCSELs). Both a 3-dB- modulation bandwidth enhancement and chirp reduction are shown in the results. These improvements could be explained by an increase in differ- ential net gain and photon-photon resonance introduced by strong coupling in coupled cavities. Our TCC VCSEL could be useful for higher data rates and longer link lengths of single-mode fiber transmissions.

参考文献

[1] M.A. Taubenblatt: “Optical interconnects for high-performance com- puting,” J. Lightw. Technol. 30 (2012) 448 (DOI: 10.1109/jlt.2011.2172989).

[2] F. Koyama: “Recent advances of VCSEL photonics,” J. Lightw. Tech- nol. 24 (2006) 4502 (DOI: 10.1109/jlt.2006.886064).

[3] K. Iga: “Vertical-cavity surface-emitting laser: its conception and evolution,” Jpn. J. Appl. Phys. 47 (2008) 1 (DOI: 10.1143/jjap.47.1).

[4] K. Iga: “Forty years of vertical-cavity surface-emitting laser: Inven- tion and innovation,” Jpn. J. Appl. Phys. 57 (2018) 08PA01 (DOI: 10.7567/jjap.57.08pa01).

[5] A. Larsson: “Advances in VCSELs for communication and sens- ing,” IEEE J. Sel. Topics Quantum Electron. 17 (2011) 1552 (DOI: 10.1109/jstqe.2011.2119469).

[6] J.B. Jensen, et al.: “VCSEL based coherent PONs,” J. Lightw. Tech- nol. 32 (2014) 1423 (DOI: 10.1109/jlt.2014.2305572).

[7] A. Boletti, et al.: “Performance analysis of communication links based on VCSEL and silicon photonics technology for high-capacity data-intensive scenario,” Optics Express 23 (2015) 1806 (DOI: 10.1364/oe.23.001806).

[8] H. Dalir and F. Koyama: “29 GHz directly modulated 980 nm vertical-cavity surface emitting lasers with bow-tie shape trans- verse coupled cavity,” Appl. Phys. Lett. 103 (2013) 091109 (DOI: 10.1063/1.4820149).

[9] H. Dalir and F. Koyama: “High-speed operation of bow-tie-shaped oxide aperture VCSELs with photon–photon resonance,” Appl. Phys. Express 7 (2014) 022102 (DOI: 10.7567/apex.7.022102).

[10] M. Ahmed, et al.: “Enhancing the modulation bandwidth of VCSELs to the millimeter-waveband using strong transverse slow-light feed- back,” Optics Express 23 (2015) 15365 (DOI: 10.1364/oe.23.015365).

[11] X. Gu, et al.: “850 nm transverse-coupled-cavity vertical-cavity surface-emitting laser with direct modulation bandwidth of over 30 GHz,” Appl. Phys. Express 8 (2015) 082702 (DOI: 10.7567/apex.8.082702).

[12] S.T.M. Fryslie, et al.: “37-GHz modulation via resonance tuning in single-mode coherent vertical-cavity laser arrays,” IEEE Photon. Technol. Lett. 27 (2015) 415 (DOI: 10.1109/lpt.2014.2376959).

[13] E. Heidari, et al.: “Hexagonal transverse-coupled-cavity VCSEL re- defining the high-speed lasers,” Nanophotonics 9 (2020) 743 (DOI: 10.1515/nanoph-2020-0437).

[14] S. Yamaoka, et al.: “Directly modulated membrane lasers with 108 GHz bandwidth on a high-thermal-conductivity silicon carbide sub- strate,” Nature Photonics 15 (2020) 28 (DOI: 10.1038/s41566-020- 00700-y).

[15] Y. Matsui, et al.: “Isolator-free > 67-GHz bandwidth DFB+R laser with suppressed chirp,” OFC 2020 (2020) Th4A.1 (DOI: 10.1364/ ofc.2020.th4a.1).

[16] S. Hu, et al.: “Low chirp and high-speed operation of transverse coupled cavity VCSEL,” Jpn. J. Appl. Phys. 54 (2015) 090304 (DOI: 10.7567/jjap.54.090304).

[17] M. Ahmed, et al.: “Enhancing the modulation bandwidth of VCSELs to the millimeter-waveband using strong transverse slow-light feed- back,” Optics Express 23 (2012) 15365 (DOI: 10.1364/oe.23.015365).

[18] K. Vahala and A. Yariv: “Detuned loading in coupled cavity semicon- ductor lasers—effect on quantum noise and dynamics,” Appl. Phys.Lett. 45 (1984) 501 (DOI: 10.1063/1.95316).

[19] G. Morthier, et al.: “Extended modulation bandwidth of DBR and external cavity lasers by utilizing a cavity resonance for equalization,” IEEE J. Quantum Electron. 36 (2000) 1468 (DOI: 10.1109/3.892568).

[20] U. Troppenz, et al.: “40 Gb/s Directly Modulated InGaAsP Passive Feedback DFB Laser,” ECOC, (2006) Th4.5.5.

[21] G.A. Wilson, et al.: “Modulation of phased-array semiconductor lasers at K-band frequencies,” IEEE J. Quantum Electron. 27 (1991) 1696 (DOI: 10.1109/3.89995).

[22] S. Mieda, et al.: “Ultra-wide-bandwidth optically controlled DFB laser with external cavity,” IEEE J. Quantum Electron. 52 (2016) 2200107 (DOI: 10.1109/jqe.2016.2557489).

[23] P. Bardella, et al.: “Design and analysis of enhanced modulation re- sponse in integrated coupled cavities DBR lasers using photon-photon resonance,” Photonics 3 (2016) 4 (DOI: 10.3390/photonics3010004).

[24] P. Bardella and I. Montrosset: “A new design procedure for DBR lasers exploiting the photon–photon resonance to achieve extended modulation bandwidth,” IEEE J. Sel. Topics Quantum Electron. 19 (2013) 1502408 (DOI: 10.1109/jstqe.2013.2250260).

[25] S. Sulikhah, et al.: “Improvement on direct modulation responses and stability by partially corrugated gratings based DFB lasers with passive feedback,” IEEE Photon. J. 13 (2021) 4900214 (DOI: 10.1109/jphot.2021.3056241).

[26] M.T. Johnson, et al.: “Beam steering via resonance detuning in co- herently coupled vertical cavity laser arrays,” Appl. Phys. Lett. 103 (2013) 201115 (DOI: 10.1063/1.4830432).

[27] A. Scire, et al.: “Dynamics of coupled self-pulsating semicon- ductor lasers,” IEEE J. Quantum Electron. 41 (2005) 272 (DOI: 10.1109/jqe.2004.841929).

[28] D.E. Hill: “Phased array tracking of semiconductor laser arrays with complex coupling coefficients,” IEEE J. Sel. Topics Quantum Elec- tron. 23 (2017) 1501209 (DOI: 10.1109/jstqe.2017.2701283).

[29] M. Vaughan, et al.: “Stability boundaries in laterally-coupled pairs of semiconductor lasers,” Photonics 6 (2019) 74 (DOI: 10.3390/ photonics6020074).

[30] M.J. Adams, et al.: “Effects of detuning, gain-guiding, and index antiguiding on the dynamics of two laterally coupled semiconductor lasers,” Phys. Rev. A 95 053869 (DOI: 10.1103/physreva.95.053869).

[31] H. Dalir and F. Koyama: “Bandwidth enhancement of single-mode VCSEL with lateral optical feedback of slow light,” IEICE Electron. Express 8 (2011) 1075 (DOI: 10.1587/elex.8.1075).

[32] G. Carpintero, et al.: “Considerations on the rate equation description of a twin stripe laser array,” Proc. SPIE 4646, (2002) 381 (DOI: 10.1117/12.470538).

[33] D. Welford: “A rate equation analysis for the frequency chirp to mod- ulated power ratio of a semiconductor diode laser,” IEEE J. Quantum Electron. 21 (1985) 1749 (DOI: 10.1109/jqe.1985.1072584).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る