リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Experimental and theoretical studies toward stronger molecular orientation with an all-optical technique」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Experimental and theoretical studies toward stronger molecular orientation with an all-optical technique

Hossain, Md.-Maruf 東京大学 DOI:10.15083/0002001874

2021.10.04

概要

A sample of aligned or oriented gaseous molecules can be used as an ideal quantum mechanical system for investigating the anisotropic dependence in many light-molecule interactions. For example, by orienting molecules to a specific direction, it is possible to control the stereodynamics of chemical reactions and selectively produce the desired product. High- harmonics generated from a sample of aligned or oriented molecules can be analyzed to probe the instantaneous structure of sample molecules. On the other hand, electromagnetic field intensity dependence of the degree of alignment or orientation can be used to estimate the anisotropies of polarizability and hyperpolarizability of sample molecules experimentally. Due to these multifaceted and compelling prospects, controlling the rotational motion of asymmetric molecules is an active area of research.

We can realize molecular alignment or orientation by utilizing the nonlinear interaction of asymmetric molecules with an intense nonresonant laser field. However, a single wavelength laser pulse can only realize molecular alignment because the interaction potential is symmetric upon the inversion of the laser electric field vector. For achieving molecular orientation, one needs to induce asymmetry in the interaction potential along the polarization axis. This asymmetric potential can be created either by introducing a weak electrostatic field or by using a phase-controlled two-color laser field. In the first approach, the permanent dipole interaction with an electrostatic field is enhanced by the anisotropic polarizability interaction with the intense nonresonant laser field. However, the presence of a weak electrostatic field may induce Stark effect in the rotationally controlled sample of asymmetric molecules, limiting their usefulness for various applications. Moreover, the orientation direction is limited by the arrangement of the electrodes used to generate the electrostatic field.

In contrast, laser fields can be rapidly turned off by using the plasma-shutter technique, and the orientation direction can be arbitrarily controlled by changing the polarization direction of the two-color laser field and the relative phase difference between the two wavelengths. Hence, all- optical molecular orientation utilizing both anisotropic polarizability and hyperpolarizability interactions with an intense nonresonant two-color laser field is the way toward the realization of completely field-free molecular orientation. However, since the second harmonic is generated by passing the intense fundamental pulse through a second-harmonic generation crystal, the rising part of the second harmonic pulse in a two-color laser field always follows the fundamental pulse. As a result, a deep symmetric potential due to polarizability interaction is created before the relatively weak asymmetric orientation potential can be formed, resulting in an enhanced degree of alignment, but a suppressed degree of orientation. Furthermore, since the orientation directions for states with even and odd quantum number J’s are opposite, the average degree of orientation of a thermal ensemble becomes weak. Despite these challenges, the proof-of- principle experiment performed in our laboratory has confirmed the validity of all-optical method of molecular orientation using a two-color laser field. The goal of this research is to experimentally and theoretically investigate different ways of further increasing the degree of molecular orientation with an all-optical method.

To realize stronger molecular orientation with two-color laser fields, we have adjusted the relative delay between the two wavelengths by introducing a Michelson-type delay line in the optical path. By delaying the fundamental pulse in this way, we effectively allow the asymmetric potential to be created at the same time when the dominant symmetric potential due to polarizability interaction is formed. We have also used a home-build molecular deflector to select lower-lying rotational states of OCS molecules as a sample and avoid the weakening of the average degree of orientation due to opposite contributions from even and odd numbered states. By applying the fundamental pulse and its second harmonic pulse from an injection- seeded Nd:YAG laser as the two-color laser field, we have observed stronger degrees of molecular orientation: <>~±0.3. The observed degree of orientation is an order of magnitude stronger than the degree of orientation obtained in the proof-of-principle experiment. It is also the strongest molecular orientation with an all-optical method, which was observed appropriately with the Coulomb explosion imaging by keeping the probe polarization perpendicular to the detection plane.

Although the applied laser pulse (FWHM ~12 ns) is orders of magnitude longer than the free rotational period of the sample molecule (82.24 ps), we theoretically and experimentally prove that all-optical molecular orientation dynamics is still nonadiabatic. Due to the nonadiabaticity, merely increasing the laser intensity will not necessarily improve the degree of orientation. Since the polarizability interaction usually is orders of magnitude larger than the hyperpolarizability interaction, the asymmetry in the potential may increase by increasing the laser intensity. However, at the same time, symmetric potential due to polarizability interaction will get deeper faster, making the tunneling to a deeper potential well more difficult. Here we propose a new all- optical molecular orientation approach which combines a linearly polarized fundamental pulse and an elliptically polarized second harmonic pulse to suppress the symmetric effect created by the polarizability interaction while accelerating the tunneling to a deeper potential well, leading to the efficient creation of molecular orientation. By solving the time-dependent Schrödinger equation numerically, we show that it is possible to increase the degree of orientation by tuning the peak intensity along the minor axis of the elliptically polarized second harmonic laser pulse. This approach is especially useful for general molecules with smaller hyperpolarizability anisotropy and larger polarizability anisotropy. Finally, numerical results are presented to prove that the same combination of linearly and elliptically polarized two-color laser field is capable of realizing three-dimensional molecular orientation, which corresponds to an all-optical method of controlling all the spatial directions of an asymmetric top molecule.

参考文献

[1]J. Yang, V. Makhija, V. Kumarappan, and M. Centurion, “Reconstruction of three-dimensional molecular structure from diffraction of laser-aligned molecules,” Structural Dynamics 1, 044101 (2014).

[2]J. Glownia, A Natan, J. Cryan, R Hartsock, M Kozina, M. Minitti, S Nelson, J Robinson, T Sato, T van Driel, et al., “Self-referenced coherent diffraction X- ray movie of Ångstrom-and femtosecond-scale atomic motion,” Physical Review Letters 117, 153003 (2016).

[3]J. Xu, C. I. Blaga, P. Agostini, and L. F. DiMauro, “Time-resolved molecular imaging,” Journal of Physics B: Atomic, Molecular and Optical Physics 49, 112001 (2016).

[4]K. Nakajima, T. Teramoto, H. Akagi, T. Fujikawa, T. Majima, S. Minemoto, K. Ogawa, H. Sakai, T. Togashi, K. Tono, et al., “Photoelectron diffraction from laser-aligned molecules with x-ray free-electron laser pulses,” Scientific Reports 5, 14065 (2015).

[5]S. Minemoto, T. Teramoto, H. Akagi, T. Fujikawa, T. Majima, K. Nakajima, K. Niki, S. Owada, H. Sakai, T. Togashi, et al., “Structure determination of molecules in an alignment laser field by femtosecond photoelectron diffraction using an X-ray free-electron laser,” Scientific Reports 6, 38654 (2016).

[6]S. Tsuru, T. Sako, T. Fujikawa, and A. Yagishita, “Theory of time-resolved x- ray photoelectron diffraction from transient conformational molecules,” Phys. Rev. A 95, 043404 (2017).

[7]S. Tsuru, T. Fujikawa, M. Stener, P. Decleva, and A. Yagishita, “Theoretical study of ultrafast x-ray photoelectron diffraction from molecules undergoing photodissociation,” The Journal of Chemical Physics 148, 124101 (2018).

[8]J. Itatani, J. Levesque, D. Zeidler, H. Niikura, H. Pépin, J.-C. Kieffer, P. B. Corkum, and D. M. Villeneuve, “Tomographic imaging of molecular orbitals,” Nature (London) 432, 867 (2004).

[9]T. Kanai, S. Minemoto, and H. Sakai, “Quantum interference during high- order harmonic generation from aligned molecules,” Nature (London) 435, 470 (2005).

[10]J. P. Marangos, “Ultrafast science: molecular structure in an instant,” Nature (London) 435, 435 (2005).

[11]T. Suzuki, S. Minemoto, T. Kanai, and H. Sakai, “Optimal control of multi- photon ionization processes in aligned I2 molecules with time-dependent polar- ization pulses,” Physical Review Letters 92, 133005 (2004).

[12]Y. Silberberg, “Ultrafast physics: quantum control with a twist,” Nature (Lon- don) 430, 624 (2004).

[13]S. Minemoto and H. Sakai, “Measuring polarizability anisotropies of rare gas diatomic molecules by laser-induced molecular alignment technique,” The Jour- nal of Chemical Physics 134, 214305 (2011).

[14]M. G. Reuter, M. A. Ratner, and T. Seideman, “Laser alignment as a route to ultrafast control of electron transport through junctions,” Physical Review A 86, 013426 (2012).

[15]I. Tutunnikov, E. Gershnabel, S. Gold, and I. S. Averbukh, “Selective Orien- tation of Chiral Molecules by Laser Fields with Twisted Polarization,” The journal of physical chemistry letters 9, 1105 (2018).

[16]R. Kafri, O. Markovitch, and D. Lancet, “Spontaneous chiral symmetry break- ing in early molecular networks,” Biology Direct 5, 38 (2010).

[17]B. Friedrich and D. R. Herschbach, “Spatial orientation of molecules in strong electric fields and evidence for pendular states,” Nature (London) 353, 412 (1991).

[18]C. Qin, Y. Liu, X. Zhang, and T. Gerber, “Phase-dependent field-free molecular alignment and orientation,” Phys. Rev. A 90, 053429 (2014).

[19]C. Qin, Y. Liu, X. Zhang, and Y. Liu, “The physical mechanism of molecu- lar alignment and orientation by a femtosecond two-color laser pulse,” The European Physical Journal D 68, 108 (2014).

[20]B. Friedrich and D. Herschbach, “Alignment and trapping of molecules in in- tense laser fields,” Physical Review Letters 74, 4623 (1995).

[21]B. Friedrich and D. Herschbach, “Polarization of molecules induced by intense nonresonant laser fields,” The Journal of Physical Chemistry 99, 15686 (1995).

[22]J. Ortigoso, M. Rodrıguez, M. Gupta, and B. Friedrich, “Time evolution of pendular states created by the interaction of molecular polarizability with a pulsed nonresonant laser field,” The Journal of Chemical Physics 110, 3870 (1999).

[23]J. J. Larsen, H. Sakai, C. P. Safvan, I. Wendt-Larsen, and H. Stapelfeldt, “Aligning molecules with intense nonresonant laser fields,” The Journal of Chemical Physics 111, 7774 (1999).

[24]H. Stapelfeldt, E. Constant, H. Sakai, and P. B. Corkum, “Time-resolved Coulomb explosion imaging: A method to measure structure and dynamics of molecular nuclear wave packets,” Phys. Rev. A 58, 426 (1998).

[25]S. Luo, R. Zhu, L. He, W. Hu, X. Li, P. Ma, C. Wang, F. Liu, W. G. Roeterdink, S. Stolte, and D. Ding, “Nonadiabatic laser-induced orientation and alignment of rotational-state-selected CH3Br molecules,” Phys. Rev. A 91, 053408 (2015).

[26]K. F. Lee, I. V. Litvinyuk, P. W. Dooley, M. Spanner, D. M. Villeneuve, and P. B. Corkum, “Two-pulse alignment of molecules,” Journal of Physics B: Atomic, Molecular and Optical Physics 37, L43 (2004).

[27]M. Z. Hoque, M. Lapert, E. Hertz, F. Billard, D. Sugny, B. Lavorel, and O. Faucher, “Observation of laser-induced field-free permanent planar alignment of molecules,” Phys. Rev. A 84, 013409 (2011).

[28]J. Larsen, “Laser induced alignment of neutral molecules,” PhD thesis (Aarhus University, 2000).

[29]J. J. Larsen, K. Hald, N. Bjerre, H. Stapelfeldt, and T. Seideman, “Three dimensional alignment of molecules using elliptically polarized laser fields,” Physical Review Letters 85, 2470 (2000).

[30]H. Stapelfeldt and T. Seideman, “Colloquium: Aligning molecules with strong laser pulses,” Rev. Mod. Phys. 75, 543 (2003).

[31]K. F. Lee, D. M. Villeneuve, P. B. Corkum, A. Stolow, and J. G. Under- wood, “Field-Free Three-Dimensional Alignment of Polyatomic Molecules,” Phys. Rev. Lett. 97, 173001 (2006).

[32]M. Artamonov and T. Seideman, “Theory of three-dimensional alignment by intense laser pulses,” The Journal of Chemical Physics 128, 154313 (2008).

[33]S. S. Viftrup, V. Kumarappan, L. Holmegaard, C. Z. Bisgaard, H. Stapelfeldt, M. Artamonov, E. Hamilton, and T. Seideman, “Controlling the rotation of asymmetric top molecules by the combination of a long and a short laser pulse,” Physical Review A 79, 023404 (2009).

[34]M. Artamonov and T. Seideman, “Three-dimensional laser alignment of poly- atomic molecular ensembles,” Molecular Physics 110, 885 (2012).

[35]B. Friedrich and D. Herschbach, “Enhanced orientation of polar molecules by combined electrostatic and nonresonant induced dipole forces,” The Journal of Chemical Physics 111, 6157 (1999).

[36]B. Friedrich, D. P. Pullman, and D. R. Herschbach, “Alignment and orientation of rotationally cool molecules,” The Journal of Physical Chemistry 95, 8118 (1991).

[37]B. Friedrich and Herschbach, “Manipulating Molecules via Combined Static and Laser Fields,” The Journal of Physical Chemistry A 103, 10280 (1999).

[38]L. Cai, J. Marango, and B. Friedrich, “Time-Dependent Alignment and Orien- tation of Molecules in Combined Electrostatic and Pulsed Nonresonant Laser Fields,” Phys. Rev. Lett. 86, 775 (2001).

[39]E Gershnabel, I. S. Averbukh, and R. J. Gordon, “Enhanced molecular ori- entation induced by molecular antialignment,” Physical Review A 74, 053414 (2006).

[40]S. Luo, W. Hu, J. Yu, R. Zhu, L. He, X. Li, P. Ma, C. Wang, F. Liu, W. G. Roeterdink, S. Stolte, and D. Ding, “Rotational Dynamics of Quantum State- Selected Symmetric-Top Molecules in Nonresonant Femtosecond Laser Fields,” The Journal of Physical Chemistry A 121, 777 (2017).

[41]S. Minemoto, H. Nanjo, H. Tanji, T. Suzuki, and H. Sakai, “Observation of molecular orientation by the combination of electrostatic and nonresonant, pulsed laser fields,” The Journal of Chemical Physics 118, 4052 (2003).

[42]H. Sakai, S. Minemoto, H. Nanjo, H. Tanji, and T. Suzuki, “Controlling the Orientation of Polar Molecules with Combined Electrostatic and Pulsed, Non- resonant Laser Fields,” Phys. Rev. Lett. 90, 083001 (2003).

[43]H. Tanji, S. Minemoto, and H. Sakai, “Three-dimensional molecular orientation with combined electrostatic and elliptically polarized laser fields,” Phys. Rev. A 72, 063401 (2005).

[44]O. Ghafur, A. Rouzée, A. Gijsbertsen, W. K. Siu, S. Stolte, and M. J. Vrakking, “Impulsive orientation and alignment of quantum-state-selected NO molecules,” Nature Physics 5, 289 (2009).

[45]J. J. Omiste and R. González-Férez, “Theoretical description of the mixed-field orientation of asymmetric-top molecules: A time-dependent study,” Phys. Rev. A 94, 063408 (2016).

[46]L. V. Thesing, J. Küpper, and R. González-Férez, “Time-dependent analysis of the mixed-field orientation of molecules without rotational symmetry,” The Journal of Chemical Physics 146, 244304 (2017).

[47]M. J. Vrakking and S. Stolte, “Coherent control of molecular orientation,” Chemical Physics Letters 271, 209 (1997).

[48]T. Kanai and H. Sakai, “Numerical simulations of molecular orientation using strong, nonresonant, two-color laser fields,” The Journal of Chemical Physics 115, 5492 (2001).

[49]T. Kanai, “Ultrafast Tomography of Molecular Orbitals with High-Order Har- monic Generation,” PhD thesis (The University of Tokyo, Mar. 2005).

[50]K. Oda, M. Hita, S. Minemoto, and H. Sakai, “All-optical molecular orienta- tion,” Phys. Rev. Lett. 104, 213901 (2010).

[51]⼩⽥啓太, “2波⻑レーザー電場を⽤いた気体分⼦の配向制御,” MA thesis (The University of Tokyo, Mar. 2009).

[52]H. Ohmura and T. Nakanaga, “Quantum control of molecular orientation by two-color laser fields,” The Journal of Chemical Physics 120, 5176 (2004).

[53]K. Kitano, H. Hasegawa, and Y. Ohshima, “Ultrafast angular momentum ori- entation by linearly polarized laser fields,” Physical Review Letters 103, 223002 (2009).

[54]S. De, I. Znakovskaya, D. Ray, F. Anis, N. G. Johnson, I. A. Bocharova, M. Magrakvelidze, B. D. Esry, C. L. Cocke, I. V. Litvinyuk, and M. F. Kling, “Field-Free Orientation of CO Molecules by Femtosecond Two-Color Laser Fields,” Phys. Rev. Lett. 103, 153002 (2009).

[55]S. Zhang, C. Lu, T. Jia, Z. Wang, and Z. Sun, “Controlling field-free molecular orientation with combined single- and dual-color laser pulses,” Phys. Rev. A 83, 043410 (2011).

[56]R. Tehini, M. Z. Hoque, O. Faucher, and D. Sugny, Phys. Rev. A 85, 043423 (2012).

[57]A. Tyagi, A. Maan, D. S. Ahlawat, and V. Prasad, “Effect of aligning pulse train on the orientation and alignment of a molecule in presence of orienting pulse,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 173, 13 (2017).

[58]P. M. Kraus, D. Baykusheva, and H. J. Wörner, “Two-Pulse Field-Free Orien- tation Reveals Anisotropy of Molecular Shape Resonance,” Phys. Rev. Lett. 113, 023001 (2014).

[59]P. M. Kraus, D Baykusheva, and H. J. Wörner, “Two-pulse orientation dynam- ics and high-harmonic spectroscopy of strongly-oriented molecules,” Journal of Physics B: Atomic, Molecular and Optical Physics 47, 124030 (2014).

[60]X. Ren, V. Makhija, H. Li, M. F. Kling, and V. Kumarappan, “Alignment- assisted field-free orientation of rotationally cold CO molecules,” Phys. Rev. A 90, 013419 (2014).

[61]A. T.J. B. Eppink and D. H. Parker, “Velocity map imaging of ions and elec- trons using electrostatic lenses: application in photoelectron and photofragment ion imaging of molecular oxygen,” Review of Scientific Instruments 68, 3477 (1997).

[62]D. H. Parker and A. T.J. B. Eppink, “Photoelectron and photofragment ve- locity map imaging of state-selected molecular oxygen dissociation/ionization dynamics,” The Journal of Chemical Physics 107, 2357 (1997).

[63]H. Li, W. Li, Y. Feng, H. Pan, and H. Zeng, “Field-free molecular orientation by femtosecond dual-color and single-cycle thz fields,” Phys. Rev. A 88, 013424 (2013).

[64]H.-P. Dang, S. Wang, W.-S. Zhan, X. Han, and J.-B. Zai, “Field-free molecular orientation by two-color femtosecond laser pulse and time-delayed THz laser pulse,” Laser Physics 25, 075301 (2015).

[65]Zhi-Yuan Huang and Ding Wang and Zheng Lang and Wen-Kai Li and Rui-Rui Zhao and Yu-Xin Leng, “Field-free molecular orientation enhanced by tuning the intensity ratio of a three-color laser field,” Chinese Physics B 26, 054209 (2017).

[66]Y.-Y. Liao, “Enhancement and suppression of field-free molecular orientation with two ultrashort pulses,” The European Physical Journal D 70, 142 (2016).

[67]L. Ma, S. Chai, X.-M. Zhang, J. Yu, and S.-L. Cong, “Molecular orientation controlled by few-cycle phase-jump pulses,” Laser Physics Letters 15, 016002 (2018).

[68]U. Arya and V. Prasad, “Field-free molecular orientation control due to ramped pulses,” Phys. Rev. A 87, 035402 (2013).

[69]N. Takemoto and K. Yamanouchi, “Fixing chiral molecules in space by intense two-color phase-locked laser fields,” Chemical Physics Letters 451, 1 (2008).

[70]K. Lin, I. Tutunnikov, J. Qiang, J. Ma, Q. Song, Q. Ji, W. Zhang, H. Li, F. Sun, X. Gong, H. Li, P. Lu, H. Zeng, Y. Prior, I. S. Averbukh, and J. Wu, “All- optical field-free three-dimensional orientation of asymmetric-top molecules,” Nature Communications 9, 5134 (2018).

[71]B. J. Sussman, J. G. Underwood, R. Lausten, M. Y. Ivanov, and A. Stolow, “Quantum control via the dynamic Stark effect: Application to switched rota- tional wave packets and molecular axis alignment,” Phys. Rev. A 73, 053403 (2006).

[72]A. Goban, “Laser-Field-Free Molecular Orientation,” MA thesis (The Univer- sity of Tokyo, Mar. 2009).

[73]A. Goban, S. Minemoto, and H. Sakai, “Laser-Field-Free Molecular Orienta- tion,” Phys. Rev. Lett. 101, 013001 (2008).

[74]武井⼤祐, “回転量⼦状態を選別した分⼦のレーザー電場のない条件下での 3 次元配向制御,” MA thesis (The University of Tokyo, Mar. 2014).

[75]D. Takei, J. H. Mun, S. Minemoto, and H. Sakai, “Laser-field-free three-dimensional molecular orientation,” Phys. Rev. A 94, 013401 (2016).

[76]Y. Sugawara, A. Goban, S. Minemoto, and H. Sakai, “Laser-field-free molecu- lar orientation with combined electrostatic and rapidly-turned-off laser fields,” Physical Review A 77, 031403 (2008).

[77]M. Muramatsu, M. Hita, S. Minemoto, and H. Sakai, “Field-free molecular orientation by an intense nonresonant two-color laser field with a slow turn on and rapid turn off,” Physical Review A 79, 011403 (2009).

[78]菅原悠, “パルス整形技術を⽤いた分⼦の配列および配向制御,” MA thesis (The University of Tokyo, Mar. 2007).

[79]村松雅弘, “整形した 2 波⻑レーザー電場を⽤いた分⼦の配列と配向の制御,” MA thesis (The University of Tokyo, Mar. 2008).

[80]S. Trippel, T. Mullins, N. L. M. Müller, J. S. Kienitz, R. González-Férez, and J. Küpper, “Two-State Wave Packet for Strong Field-Free Molecular Orienta- tion,” Phys. Rev. Lett. 114, 103003 (2015).

[81]A. S. Chatterley, E. T. Karamatskos, C. Schouder, L. Christiansen, A. V. Jør- gensen, T. Mullins, J. Küpper, and H. Stapelfeldt, “Communication: Switched wave packets with spectrally truncated chirped pulses,” The Journal of Chem- ical Physics 148, 221105 (2018).

[82]J. H. Mun, “Laser-field-free and field-free orientation of state-selected molecules,” PhD thesis (The University of Tokyo, Mar. 2015).

[83]J. H. Mun and H. Sakai, “Improving molecular orientation by optimizing rel- ative delay and intensities of two-color laser pulses,” Physical Review A 98, 013404 (2018).

[84]V. Devanathan, Angular Momentum Techniques in Quantum Mechanics, Fun- damental Theories of Physics (Springer Netherlands, 2006).

[85]R. N. Zare, Angular momentum : understanding spatial aspects in chemistry and physics (Wiley, 1988), p. 349.

[86]幸⽥清⼀郎、⼩⾕正博、染⽥清彦、阿波賀邦夫 編, 量⼦化学と分⼦分光学, 第 2 版, ⼤学院講義物理化学 1 (東京化学同⼈, 2013).

[87]A. Edmonds, Angular Momentum in Quantum Mechanics, Investigations in physics (Princeton University Press, 1974).

[88]N. Matsuzawa and D. A. Dixon, “Density functional theory predictions of po- larizabilities and first- and second-order hyperpolarizabilities for molecular sys- tems,” The Journal of Physical Chemistry 98, 2545 (1994).

[89]J. L. Neill, S. T. Shipman, L. Alvarez-Valtierra, A. Lesarri, Z. Kisiel, and B. H. Pate, “Rotational spectroscopy of iodobenzene and iodobenzene–neon with a direct digital 2–8 GHz chirped-pulse Fourier transform microwave spectrome- ter,” Journal of Molecular Spectroscopy 269, 21 (2011).

[90]G. Maroulis and M. Menadakis, “Polarizability and hyperpolarizability of COS and NNO,” Chemical Physics Letters 494, 144 (2010).

[91]P. Bündgen, F. Grein, and A. J. Thakkar, “Dipole and quadrupole moments of small molecules. An ab initio study using perturbatively corrected, multi- reference, configuration interaction wave functions,” Journal of Molecular Struc- ture: THEOCHEM 334, 7 (1995).

[92]G. Maroulis and C. Pouchan, “Dipole polarizability and hyperpolarizability of FCN, CICN, BrCN and ICN,” Chemical Physics 215, 67 (1997).

[93]H. Casimir, Rotation of a rigid body in quantum mechanics (J. B. Wolter, 1931). [94]P. Atkins and R. Friedman, Molecular Quantum Mechanics (OUP Oxford, 2011).

[95]C. Dion, A. Keller, and O. Atabek, “Orienting molecules using half-cycle pulses,” The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics 14, 249 (2001).

[96]R. Loudon, The Quantum Theory of Light (OUP Oxford, 2000).

[97]O. V. Tikhonova and M. S. Molodenskii, “Dynamics of localized wave packets of rotational states of a molecule in a strong laser field,” Journal of Experimental and Theoretical Physics 98, 1087 (2004).

[98]R Tehini and D. Sugny, “Field-free molecular orientation by nonresonant and quasiresonant two-color laser pulses,” Physical Review A 77, 023407 (2008).

[99]M. Lemeshko, R. V. Krems, J. M. Doyle, and S. Kais, “Manipulation of molecules with electromagnetic fields,” Molecular Physics 111, 1648 (2013).

[100]K. Yamanouchi, Quantum Mechanics of Molecular Structures, SpringerLink : Bücher (Springer Berlin Heidelberg, 2013).

[101]A. Messiah, Quantum Mechanics (John Wiley & Sons Canada, Limited, 1961). [102]L. Landau and E. Lifshitz, Quantum Mechanics: Non-Relativistic Theory, Course of Theoretical Physics (Elsevier Science, 1981).

[103]L. Kirkby, Physics: A Student Companion (Scion Publishing, 2011). [104]K. Igi and H. Kawai, Ryōshi rikigaku. 001. (Kōdansha, 1994).

[105]K. Katou, “Observation of the phase differences of near-threshold high-order harmonics generated in atoms and molecules,” PhD thesis (The University of Tokyo, Sept. 2014).

[106]Y. Sakemi, “Studies on interactions of molecules with intense femtosecond laser pulses,” PhD thesis (The University of Tokyo, Mar. 2015).

[107]L. Ma, S. Chai, X.-M. Zhang, J. Yu, and S.-L. Cong, “Molecular orientation controlled by few-cycle phase-jump pulses,” Laser Physics Letters 15, 016002 (2018).

[108]E. P. Wigner and J. J. Griffin, Group theory and its application to the quantum mechanics of atomic spectra, v. 5 (Academic Press, 1959).

[109]物理のためのリー群とリー代数, SGC ライブラリ (サイエンス社, 2008). [110]F. Peter and H. Weyl, “Die Vollständigkeit der primitiven Darstellungen einer geschlossenen kontinuierlichen Gruppe,” Mathematische Annalen 97, 737 (1927).

[111]U. Fano and G. Racah, Irreducible tensorial sets, Pure and applied physics (Academic Press, 1959).

[112]G. Burns, Introduction to group theory with applications, Materials science and technology (Academic Press, 1977).

[113]J. Normand, A Lie Group, Rotations in Quantum Mechanics (North-Holland Publishing Company, 1980).

[114]P. Bunker and P. Jensen, Molecular symmetry and spectroscopy, Monographs - Physical Sciences (NRC Research Press National Research Council of Canada, 1998).

[115]⼩野寺嘉孝, 物性物理/物性化学のための群論⼊⾨ (裳華房, 1996).

[116]K. Riley, M. Hobson, and S. Bence, Mathematical Methods for Physics and Engineering: A Comprehensive Guide (Cambridge University Press, 2002).

[117]G. Arfken, H. Weber, and F. Harris, Mathematical Methods for Physicists: A Comprehensive Guide (Elsevier Science, 2013).

[118]T. MacRobert and I. Sneddon, Spherical Harmonics: An Elementary Treatise on Harmonic Functions, with Applications, International series of monographs in pure and applied mathematics (Pergamon Press, 1967).

[119]W. Byerly, An Elementary Treatise on Fourier’s Series: and Spherical, Cylindri- cal, and Ellipsoidal Harmonics, with Applications to Problems in Mathematical Physics, Dover Books on Mathematics (Dover Publications, 2014).

[120]H. Sakai, A. Tarasevitch, J. Danilov, H. Stapelfeldt, R. W. Yip, C. Ellert, E. Constant, and P. B. Corkum, “Optical deflection of molecules,” Phys. Rev. A 57, 2794 (1998).

[121]A. Keller, C. M. Dion, and O. Atabek, “Laser-induced molecular rotational dy- namics: A high-frequency Floquet approach,” Phys. Rev. A 61, 023409 (2000).

[122]M. Spanner, S. Patchkovskii, E. Frumker, and P. Corkum, “Mechanisms of Two-Color Laser-Induced Field-Free Molecular Orientation,” Phys. Rev. Lett. 109, 113001 (2012).

[123]K. Sonoda, A. Iwasaki, K. Yamanouchi, and H. Hasegawa, “Field-free molecular orientation of nonadiabatically aligned OCS,” Chemical Physics Letters 693, 114 (2018).

[124]P Ehrenfest, “P. Ehrenfest, Ann. Phys.(Berlin) 51, 327 (1916).,” Ann. Phys.(Berlin) 51, 327 (1916).

[125]M. Born and V. Fock, “Beweis des Adiabatensatzes,” Zeitschrift für Physik 51, 165 (1928).

[126]T. Kato, “On the Adiabatic Theorem of Quantum Mechanics,” Journal of the Physical Society of Japan 5, 435 (1950).

[127]G Nenciu, “On the adiabatic theorem of quantum mechanics,” Journal of Physics A: Mathematical and General 13, L15 (1980).

[128]B. Bransden and C. Joachain, Quantum Mechanics (Prentice Hall, 2000). [129]D. Griffiths and D. Schroeter, Introduction to Quantum Mechanics (Cambridge University Press, 2018).

[130]A. C. Aguiar Pinto, M. C. Nemes, J. G. Peixoto de Faria, and M. T. Thomaz, “Comment on the adiabatic condition,” American Journal of Physics 68, 955 (2000).

[131]D. M. Tong, K. Singh, L. C. Kwek, and C. H. Oh, “Quantitative Conditions Do Not Guarantee the Validity of the Adiabatic Approximation,” Phys. Rev. Lett. 95, 110407 (2005).

[132]J. Ortigoso, “Quantum adiabatic theorem in light of the Marzlin-Sanders in- consistency,” Phys. Rev. A 86, 032121 (2012).

[133]D. A. Varshalovich, A. N. Moskalev, and V. K. Khersonskii, Quantum Theory of Angular Momentum (WORLD SCIENTIFIC, 1988).

[134]A. Meurer, C. P. Smith, M. Paprocki, O. Čertík, S. B. Kirpichev, M. Rocklin, A. Kumar, S. Ivanov, J. K. Moore, S. Singh, T. Rathnayake, S. Vig, B. E. Granger, R. P. Muller, F. Bonazzi, H. Gupta, S. Vats, F. Johansson, F. Pedregosa, M. J. Curry, A. R. Terrel, v. Roučka, A. Saboo, I. Fernando, S. Kulal, R. Cimrman, and A. Scopatz, “SymPy: symbolic computing in Python,” PeerJ Computer Science 3, e103 (2017).

[135]B. Shore, Manipulating Quantum Structures Using Laser Pulses (Cambridge University Press, 2011).

[136]C. W. Gear, Numerical Initial Value Problems in Ordinary Differential Equa- tions (Prentice-Hall, Englewood-Cliffs, NJ, 1971).

[137]桜井捷海, 数値計算による量⼦⼒学 (裳華房, 1994).

[138]W. Press, S. Teukolsky, W. Vetterling, and B. Flannery, Numerical Recipes 3rd Edition: The Art of Scientific Computing (Cambridge University Press, 2007).

[139]S. Širca and M. Horvat, Computational Methods in Physics: Compendium for Students, Graduate Texts in Physics (Springer International Publishing, 2018).

[140]K. Gustafsson, “Control theoretic techniques for stepsize selection in explicit runge-kutta methods,” ACM Trans. Math. Softw. 17, 533 (1991).

[141]J. Dormand and P. Prince, “A family of embedded Runge-Kutta formulae,” Journal of Computational and Applied Mathematics 6, 19 (1980).

[142]J. Stoer, R. Bartels, W. Gautschi, R. Bulirsch, and C. Witzgall, Introduction to Numerical Analysis, Texts in Applied Mathematics (Springer New York, 2013).

[143]桜井捷海, コンピュータで学ぶ量⼦⼒学基礎編: 数値計算による量⼦⼒学 (フロッピーディスク付) (裳華房, 1992).

[144]J. Geiser, G. Tanoğlu, and N. Gücüyenen, “Higher order operator splitting methods via Zassenhaus product formula: Theory and applications,” Comput- ers & Mathematics with Applications 62, 1994 (2011).

[145]J. Izaac and J. Wang, Computational Quantum Mechanics, Undergraduate Lecture Notes in Physics (Springer International Publishing, 2019).

[146]H. F. Trotter, “On the Product of Semi-Groups of Operators,” Proceedings of the American Mathematical Society 10, 545 (1959).

[147]M. Suzuki, “Decomposition formulas of exponential operators and lie exponen- tials with some applications to quantum mechanics and statistical physics,” Journal of Mathematical Physics 26, 601 (1985).

[148]M. Suzuki, “Fractal decomposition of exponential operators with applications to many-body theories and Monte Carlo simulations,” Physics Letters A 146, 319 (1990).

[149]I. Dhand and B. C. Sanders, “Stability of the Trotter–Suzuki decomposition,” Journal of Physics A: Mathematical and Theoretical 47, 265206 (2014).

[150]N. Wiebe, D. Berry, P. Høyer, and B. C. Sanders, “Higher order decompositions of ordered operator exponentials,” Journal of Physics A: Mathematical and Theoretical 43, 065203 (2010).

[151]C. S. Bederián and A. D. Dente, “Boosting quantum evolutions using Trotter- Suzuki algorithms on GPUs,” in Proceedings of HPCLatAm-11, 4th High- Performance Computing Symposium, Córdoba, Argentina (Citeseer, 2011).

[152]P. Wittek and F. M. Cucchietti, “A second-order distributed Trotter–Suzuki solver with a hybrid CPU–GPU kernel,” Computer Physics Communications 184, 1165 (2013).

[153]P. Wittek and L. Calderaro, “Extended Computational Kernels in a Mas- sively Parallel Implementation of the Trotter–Suzuki Approximation,” Com- puter Physics Communications 197 (2015).

[154]J. Crank and P. Nicolson, “A practical method for numerical evaluation of so- lutions of partial differential equations of the heat-conduction type,” Advances in Computational Mathematics 6, 207 (1996).

[155]E. J. Davison, “A High-Order Crank–Nicholson Technique for Solving Differ- ential Equations,” The Computer Journal 10, 195 (1967).

[156]E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, LA- PACK Users’ Guide, Third edition (Society for Industrial and Applied Mathe- matics, Philadelphia, PA, 1999).

[157]L. S. Blackford, A. Petitet, R. Pozo, K. Remington, R. C. Whaley, J. Demmel, J. Dongarra, I. Duff, S. Hammarling, G. Henry, et al., “An updated set of ba- sic linear algebra subprograms (BLAS),” ACM Transactions on Mathematical Software 28, 135 (2002).

[158]J. Dongarra, “Basic linear algebra subprograms technical forum standard,” High Performance Applications and Supercomputing 16, 1 (2002).

[159] 塙敏博、中島研吾、⼤島聡史、伊⽥明弘、星野哲也、⽥浦健次朗, データ解析・シミュレーション融合スーパーコンピュータシステム Reedbush-U の性能評価, tech. rep. 10 (東京⼤学情報基盤センター, 東京⼤学情報基盤センター, 東京⼤学情報基盤センター, 東京⼤学情報基盤センター, 東京⼤学情報基盤センター, 東京⼤学情報基盤センター, Sept. 2016).

[160] 塙敏博、星野哲也、中島研吾、⼤島聡史、伊⽥明弘, GPU 搭載スーパーコンピュータ Reedbush-H の性能評価, tech. rep. 9 (東京⼤学情報基盤センター,東京⼤学情報基盤センター, 東京⼤学情報基盤センター, 東京⼤学情報基盤センター, 東京⼤学情報基盤センター, Apr. 2017).

[161]G. Rossum, Python Reference Manual, tech. rep. (Amsterdam, The Nether- lands, The Netherlands, 1995).

[162]E. Jones, T. Oliphant, P. Peterson, et al., SciPy: open source scientific tools for Python, [Online: http://www.scipy.org/], 2001.

[163]T. E. Oliphant, “Python for Scientific Computing,” Computing in Science & Engineering 9, 10 (2007).

[164]K. J. Millman and M. Aivazis, “Python for Scientists and Engineers,” Com- puting in Science & Engineering 13, 9 (2011).

[165]T. E. Oliphant, A guide to NumPy, Vol. 1 (USA: Trelgol Publishing, 2006). [166]C. Fuhrer, J. Solem, and O. Verdier, Scientific Computing with Python 3 (Packt Publishing, 2016).

[167]K. Ayyadevara, L. Martins, R. Ramos, T. Oliva, and K. Wu, SciPy Recipes: A cookbook with over 110 proven recipes for performing mathematical and scien- tific computations (Packt Publishing, 2017).

[168]J. Nunez-Iglesias, S. van der Walt, and H. Dashnow, Elegant SciPy: The Art of Scientific Python, 1st (O’Reilly Media, Inc., 2017).

[169] Intel Math Kernel Library, http://software.intel.com/en-us/articles/intel-mkl/.

[170] Oleksandr Pavlyk, Denis Nagorny, Andres Guzman Ballen, Anton Malakhov, Hai Liu, Ehsan Totoni, Todd A. Anderson, and Sergey Maidanov, “Accelerating Scientific Python with Intel Optimizations,” in Proceedings of the 16th Python in Science Conference, edited by Katy Huff, David Lippa, Dillon Niederhut, and M. Pacer (2017), pp. 106 –112.

[171]L. D. Dalcin, R. R. Paz, P. A. Kler, and A. Cosimo, “Parallel Distributed Computing using Python,” Advances in Water Resources 34, 1124 (2011).

[172]R. Smith, “Performance of MPI Codes Written in Python with NumPy and Mpi4Py,” in Proceedings of the 6th workshop on python for high-performance and scientific computing, PyHPC ’16 (2016), pp. 45–51.

[173]W. McKinney, “Data Structures for Statistical Computing in Python,” in Pro- ceedings of the 9th Python in Science Conference, edited by S. van der Walt and J. Millman (2010), pp. 51 –56.

[174]J. D. Hunter, “Matplotlib: A 2D Graphics Environment,” Computing in Science & Engineering 9, 90 (2007).

[175]A. George and J. Liu, Computer solution of large sparse positive definite sys- tems, Prentice-Hall series in computational mathematics (Prentice-Hall, 1981).

[176]J. R. Gilbert, C. Moler, and R. Schreiber, “Sparse Matrices in MATLAB: Design And Implementation,” SIAM J. Matrix Anal. Appl 13, 333 (1992).

[177]T. A. Davis and Y. Hu, “The University of Florida Sparse Matrix Collection,” ACM Trans. Math. Softw. 38, 1:1 (2011).

[178]F. Bauer, A. Householder, J. Wilkinson, and C. Reinsch, Handbook for Auto- matic Computation: Volume II: Linear Algebra, Grundlehren der mathematis- chen Wissenschaften (Springer Berlin Heidelberg, 2012).

[179]S. J. Rojas G., E. Christensen, and F. Blanco-Silva, Learning SciPy for Numeri- cal and Scientific Computing - Second Edition, Community experience distilled (Packt Publishing, 2015).

[180]I. Duff, A. Erisman, and J. Reid, Direct Methods for Sparse Matrices, Numerical Mathematics and Scientific Computation (OUP Oxford, 2017).

[181]M. Pitzer, M. Kunitski, A. S. Johnson, T. Jahnke, H. Sann, F. Sturm, L. P. H. Schmidt, H. Schmidt-Böcking, R. Dörner, J. Stohner, J. Kiedrowski, M. Reggelin, S. Marquardt, A. Schießer, R. Berger, and M. S. Schöffler, “Direct Determina- tion of Absolute Molecular Stereochemistry in Gas Phase by Coulomb Explo- sion Imaging,” Science 341, 1096 (2013).

[182]U. Even, J. Jortner, D. Noy, N. Lavie, and C. Cossart-Magos, “Cooling of large molecules below 1 K and He clusters formation,” The Journal of Chemical Physics 112, 8068 (2000).

[183]星野哲朗, “分⼦配向制御のための分⼦偏向器の開発,” MA thesis (The Uni- versity of Tokyo, Mar. 2011).

[184]A Amirav, U Even, and J Jortner, “Cooling of large and heavy molecules in seeded supersonic beams,” Chemical Physics 51, 31 (1980).

[185]D. L. Snavely, S. D. Colson, and K. B. Wiberg, “Rotational cooling in a su- personic expansion of ammonia,” The Journal of Chemical Physics 74, 6975 (1981).

[186]M. P. Sinha, A. Schultz, and R. N. Zare, “Internal state distribution of alkali dimers in supersonic nozzle beams,” The Journal of Chemical Physics 58, 549 (1973).

[187]D. H. Levy, L. Wharton, and R. E. Smalley, in Chemical and Biochemical Applications of Lasers, edited by C. B. MOORE (Academic Press, 1977), pp. 1 –41.

[188]D. H. Levy, “The spectroscopy of very cold gases,” Science, 263 (1981). [189]W. C. Wiley and I. H. McLaren, “Time‐of‐Flight Mass Spectrometer with Improved Resolution,” Review of Scientific Instruments 26, 1150 (1955).

[190]C. R. Gebhardt, T. P. Rakitzis, P. C. Samartzis, V. Ladopoulos, and T. N. Kitsopoulos, “Slice imaging: A new approach to ion imaging and velocity map- ping,” Review of Scientific Instruments 72, 3848 (2001).

[191]D. Townsend, M. P. Minitti, and A. G. Suits, “Direct current slice imaging,” Review of Scientific Instruments 74, 2530 (2003).

[192]G. Wu, W. Zhang, H. Pan, Q. Shuai, B. Jiang, D. Dai, and X. Yang, “A new crossed molecular beam apparatus using time-sliced ion velocity imaging technique,” Review of Scientific Instruments 79, 094104 (2008).

[193]B. J. Whitaker, Imaging in Molecular Dynamics: Technology and Applications (Cambridge university press, 2003).

[194]B. Mamyrin, “Laser assisted reflectron time-of-flight mass spectrometry,” In- ternational Journal of Mass Spectrometry and Ion Processes 131, 1 (1994).

[195]D. Ioanoviciu, in Time-of-flight mass spectrometry and its applications, edited by E. Schlag (Elsevier, Amsterdam, 1994), pp. 43 –65.

[196]D. Ioanoviciu, “Ion-Optical solutions in time-of-flight mass spectrometry,” Rapid Communications in Mass Spectrometry 9, 985.

[197]L. J. Frasinski, K. Codling, and P. A. Hatherly, “Covariance Mapping: A Corre- lation Method Applied to Multiphoton Multiple Ionization,” Science 246, 1029 (1989).

[198]K Codling and L. J. Frasinski, “Dissociative ionization of small molecules in in- tense laser fields,” Journal of Physics B: Atomic, Molecular and Optical Physics 26, 783 (1993).

[199]I. Noda and Y. Ozaki, Two-Dimensional Correlation Spectroscopy: Applications in Vibrational and Optical Spectroscopy (Wiley, 2005).

[200]W. Gordy and R. Cook, Microwave molecular spectra, Techniques of chemistry (Wiley, 1984).

[201]A. Rouzée, A. Gijsbertsen, O. Ghafur, O. M. Shir, T. Bäck, S. Stolte, and M. J. J. Vrakking, “Optimization of laser field-free orientation of a state- selected NO molecular sample,” New Journal of Physics 11, 105040 (2009).

[202]J. Küpper, F. Filsinger, and G. Meijer, “Manipulating the motion of large neutral molecules,” Faraday Discuss. 142, 155 (2009).

[203]L. Holmegaard, J. H. Nielsen, I. Nevo, H. Stapelfeldt, F. Filsinger, J. Küpper, and G. Meijer, “Laser-Induced Alignment and Orientation of Quantum-State- Selected Large Molecules,” Phys. Rev. Lett. 102, 023001 (2009).

[204]J. H. Nielsen, “Laser-Induced Alignment and Orientation of Quantum-State Selected Molecules and Molecules in Liquid Helium Droplets,” PhD thesis (Aarhus University, Feb. 2012).

[205]F. Filsinger, J. Küpper, G. Meijer, L. Holmegaard, J. H. Nielsen, I. Nevo, J. L. Hansen, and H. Stapelfeldt, “Quantum-state selection, alignment, and orientation of large molecules using static electric and laser fields,” The Journal of Chemical Physics 131, 064309 (2009).

[206]Y.-P. Chang, F. Filsinger, B. G. Sartakov, and J. Küpper, “CMIstark: Python package for the Stark-effect calculation and symmetry classification of linear, symmetric and asymmetric top wavefunctions in dc electric fields,” Computer Physics Communications 185, 339 (2014).

[207]Y.-P. Chang, D. A. Horke, S. Trippel, and J. Küpper, “Spatially-controlled complex molecules and their applications,” International Reviews in Physical Chemistry 34, 557 (2015).

[208]L. He, J. Bulthuis, S. Luo, J. Wang, C. Lu, S. Stolte, D. Ding, and W. G. Roeterdink, “Laser induced alignment of state-selected CH3I,” Phys. Chem. Chem. Phys. 17, 24121 (2015).

[209]H. L. Bethlem, M. R. Tarbutt, J. Kupper, D. Carty, K. Wohlfart, E. A. Hinds, and G. Meijer, “Alternating gradient focusing and deceleration of polar molecules.,” Journal of Physics B : Atomic, Molecular and Optical Physics. 39, R263 (2006).

[210]I. Nevo, L. Holmegaard, J. H. Nielsen, J. L. Hansen, H. Stapelfeldt, F. Filsinger, G. Meijer, and J. Küpper, “Laser-induced 3D alignment and orientation of quantum state-selected molecules,” Physical Chemistry Chemical Physics 11, 9912 (2009).

[211]N. Ramsey and O. U. Press, Molecular Beams, International series of mono- graphs on physics (OUP Oxford, 1956).

[212]P. J. de Groot, “Vibration in phase-shifting interferometry,” J. Opt. Soc. Am. A 12, 354 (1995).

[213]L. L. Deck, “Suppressing phase errors from vibration in phase-shifting interfer- ometry,” Appl. Opt. 48, 3948 (2009).

[214]G. W. Li, S. J. Huang, H. S. Wu, S. Fang, D. S. Hong, T. Mohamed, and D. J. Han, “A Michelson Interferometer for Relative Phase Locking of Optical Beams,” Journal of the Physical Society of Japan 77, 024301 (2008).

[215]H. Mashiko, S. Gilbertson, C. Li, S. D. Khan, M. M. Shakya, E. Moon, and Z. Chang, “Double Optical Gating of High-Order Harmonic Generation with Carrier-Envelope Phase Stabilized Lasers,” Phys. Rev. Lett. 100, 103906 (2008).

[216]M. Chini, H. Mashiko, H. Wang, S. Chen, C. Yun, S. Scott, S. Gilbertson, and Z. Chang, “Delay control in attosecond pump-probe experiments,” Opt. Express 17, 21459 (2009).

[217]N. P. Barnes and I. A. Crabbe, “Coherence length of a Q‐switched Nd:YAG laser,” Journal of Applied Physics 46, 4093 (1975).

[218]Q. Chao-Chao, J. Guang-Rui, Z. Xian-Zhou, L. Yu-Fang, L. Jin-You, and Z. Bing, “Field-free molecular orientation induced by combined femtosecond single- and dual-color laser pulses: The role of delay time and quantum inter- ference,” Chinese Physics B 23, 013302 (2014).

[219]T. Seideman and E. Hamilton, in , Vol. 52, edited by P. Berman and C. Lin, Advances in Atomic, Molecular, and Optical Physics (Academic Press, 2005), pp. 289 –329.

[220]A. S. Chatterley, B. Shepperson, and H. Stapelfeldt, “Three-Dimensional Molec- ular Alignment Inside Helium Nanodroplets,” Phys. Rev. Lett. 119, 073202 (2017).

[221]J. L. Hansen, L. Holmegaard, L. Kalhøj, S. L. Kragh, H. Stapelfeldt, F. Filsinger, G. Meijer, J. Küpper, D. Dimitrovski, M. Abu-samha, C. P. J. Martiny, and L. B. Madsen, “Ionization of one- and three-dimensionally-oriented asymmetric- top molecules by intense circularly polarized femtosecond laser pulses,” Phys. Rev. A 83, 023406 (2011).

[222]J. J. Omiste, M. Gärttner, P Schmelcher, R González-Férez, L. Holmegaard, J. H. Nielsen, H. Stapelfeldt, and J. Küpper, “Theoretical description of adia- batic laser alignment and mixed-field orientation: the need for a non-adiabatic model,” Physical Chemistry Chemical Physics 13, 18815 (2011).

[223]X. Ren, V. Makhija, and V. Kumarappan, “Multipulse Three-Dimensional Alignment of Asymmetric Top Molecules,” Phys. Rev. Lett. 112, 173602 (2014).

[224]V. Makhija, X. Ren, and V. Kumarappan, “Metric for three-dimensional align- ment of molecules,” Phys. Rev. A 85, 033425 (2012).

[225]G. Graner, E. Hirota, T. Iijima, K. Kuchitsu, D. A. Ramsay, J. Vogt, and N. Vogt, C6H5I, Iodobenzene: Datasheet from Landolt-Börnstein - Group II Molecules and Radicals · Volume 25D: “Molecules Containing Five or More Carbon Atoms” in Springer Materials, edited by K. Kuchitsu, Copyright 2003 Springer-Verlag Berlin Heidelberg.

[226]O. Dorosh, E. Białkowska-Jaworska, Z. Kisiel, and L. Pszczółkowski, “New mea- surements and global analysis of rotational spectra of Cl-, Br-, and I-benzene: Spectroscopic constants and electric dipole moments,” Journal of Molecular Spectroscopy 246, 228 (2007).

[227]L. Marchildon, Quantum Mechanics: From Basic Principles to Numerical Meth- ods and Applications, Advanced Texts in Physics (Springer Berlin Heidelberg, 2013).

[228]A. Yariv, Quantum electronics (Wiley, 1989), p. 676.

[229]Z. Wang, Z. Zhang, Z. Xu, and Q. Lin, “Space-time profiles of an ultrashort pulsed Gaussian beam,” IEEE Journal of Quantum Electronics 33, 566 (1997).

[230]D. Cheng, Field and wave electromagnetics, The Addison-Wesley series in elec- trical engineering (Addison-Wesley Publishing Company, 1989).

[231]J. D. Cox and F. J. G. De Abajo, “Electrically tunable nonlinear plasmonics in graphene nanoislands,” Nature Communications 5, 5725 (2014).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る