リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「リゾホスファチジルエタノールアミンの質量分析法の確立と応用に関する研究」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

リゾホスファチジルエタノールアミンの質量分析法の確立と応用に関する研究

山本, 祐輔 北海道大学

2021.03.25

概要

リゾホスファチジルエタノールアミン(LysoPE)は、ホスファチジルエタノールアミン(PE)の加水分解産物である。LysoPEは、がんの走化性遊走と細胞浸潤を促すなどのinvitroでの生理活性を持ち合わせているにも関わらず、臨床サンプル中のLysoPEの各分子種を決定づけるための高感度かつ正確な定量分析方法がないために、血清におけるLysoPEの病態生理学的な役割に関する報告は限られている。本研究では、液体クロマトグラフ質量分析(LC-MS/MS)を用いたLysoPE分子種のプロファイリングを目的とした定量方法を開発し、臨床サンプルへの応用を試みた。定量系の開発にあたり、内部標準物質(IS)と一部LysoPE標準品の有機合成を既報に基づいて行い、市販されているLysoPE分子種と合わせて全7分子種の主要なLysoPE標準品を用いてLysoPEの測定を行った。LC-MS/MSを用いた定量系におけるLysoPE分子種の検出限界(LOD)と定量限界(LOQ)は、それぞれ0.5-3.3pmol/mLと1.0-5.0pmol/mLであった。さらに、定量系の応用として、健常者(n=8)並びに単純性脂肪肝(SS、n=9)および非アルコール性脂肪性肝炎(NASH、n=27)を含む非アルコール性脂肪性肝疾患患者の血清中LysoPE濃度を測定した。7分子種のLysoPEの合計濃度は健常者、SS、NASHの各群においてそれぞれ18.030±3.832nmol/mL、4.867±1.852nmol/mL、および5.497±2.495nmol/mLであった。分子種毎のLysoPE定量結果ではLysoPE18:0を除き、LysoPE濃度がNAFLD群で健常者群と比較して有意に減少した。しかし、SS及びNASH群間に有意差は観察されなかった。今回開発したLC-MS/MSを用いたLysoPE定量系を臨床検体に応用した結果、少量の血清量(10μL)で7分子種の同時定量が可能であることが分かった。また、LysoPE低下の原因の一つと考えられる細胞への取り込みについて検証した。その結果、LysoPEが肝細胞に濃度依存的に脂肪滴を形成させることが明らかとなり、TAGやCEにおいて増加した分子種がその細胞で確認された。そして、一部の脂質代謝関連遺伝子(ATGL、SREBP1、SCD1)を低下させた。本研究で確立したLysoPE定量系は今後、臨床検体のみならず、細胞や動物実験などへの応用が期待され、LysoPEの病態生理学的役割の解明に貢献すると考えられる。

この論文で使われている画像

参考文献

1. Makide K, Kitamura H, Sato Y, Okutani M, Aoki J. Emerging lysophospholipid mediators, lysophosphatidylserine, lysophosphatidylthreonine, lysophosphatidylethanolamine and lysophosphatidylglycerol. Prostaglandins Other Lipid Mediat. 89:135–9, 2009.

2. Makide K, Uwamizu A, Shinjo Y, Ishiguro J, Okutani M, Inoue A, et al. Novel lysophospholipid receptors: their structure and function. J Lipid Res. 55:1986–95, 2014.

3. Metz SA. Lysophosphatidylinositol, but not lysophosphatidic acid, stimulates insulin release. A possible role for phospholipase A2 but not de novo synthesis of lysophospholipid in pancreatic islet function. Biochem Biophys Res Commun. 138:720–727, 1986.

4. Kurano M, Kano K, Hara M, Tsukamoto K, Aoki J, Yatomi Y. Regulation of plasma glycero-lysophospholipid levels by lipoprotein metabolism. Biochem J. 476:3565–81, 2019.

5. Okita M, Gaudette DC, Mills GB, Holub BJ. Elevated levels and altered fatty acid composition of plasma lysophosphatidylcholine(lysoPC) in ovarian cancer patients. Int J Cancer. 71:31–4, 1997.

6. Sun J, Shannon M, Ando Y, Schnackenberg LK, Khan NA, Portilla D, et al. Serum metabolomic profiles from patients with acute kidney injury: a pilot study. J Chromatogr B Anal Technol Biomed Life Sci. 893–894:107– 13, 2012.

7. Tiwari-Heckler S, Gan-Schreier H, Stremmel W, Chamulitrat W, Pathil A. Circulating phospholipid patterns in NAFLD patients associated with a combination of metabolic risk factors. Nutrients. 10:649, 2018.

8. Heimerl S, Fischer M, Baessler A, Liebisch G, Sigruener A, Wallner S, et al. Alterations of plasma lysophosphatidylcholine species in obesity and weight loss. PLoS One. 9:1–7, 2014.

9. Kishimoto T, Soda Y, Matsuyama Y, Mizuno K. An enzymatic assay for lysophosphatidylcholine concentration in human serum and plasma. Clin Biochem. 35:411–6, 2002.

10. Vuong TD, De Kimpe S, De Roos R, Rabelink TJ, Koomans HA, Joles JA. Albumin restores lysophosphatidylcholine-induced inhibition of vasodilation in rat aorta. Kidney Int. 60:1088–96, 2001.

11. Perrin-Cocon L, Agaugué S, Coutant F, Saint-Mézard P, Guironnet-Paquet A, Nicolas JF, et al. Lysophosphatidylcholine is a natural adjuvant that initiates cellular immune responses. Vaccine. 24:1254–63, 2006.

12. Lehmann R, Franken H, Dammeier S, Rosenbaum L, Kantartzis K, Peter A, et al. Circulating lysophosphatidylcholines are markers of a metabolically benign nonalcoholic fatty liver. Diabetes Care. 36:2331–8, 2013.

13. Nishina A, Kimura H, Sekiguchi A, Fukumoto RH, Nakajima S, Furukawa S. Lysophosphatidylethanolamine in Grifola frondosa as a neurotrophic activator via activation of MAPK. J Lipid Res. 47:1434–43, 2006.

14. Park KS, Lee HY, Lee SY, Kim MK, Kim SD, Kim JM, et al. Lysophosphatidylethanolamine stimulates chemotactic migration and cellular invasion in SK-OV3 human ovarian cancer cells: involvement of pertussis toxin-sensitive G-protein coupled receptor. FEBS Lett. 581:4411–6, 2007.

15. Ren C, Liu J, Zhou J, Liang H, Wang Y, Sun Y, et al. Lipidomic analysis of serum samples from migraine patients. Lipids Health Dis. 17:1–9, 2018.

16. Kihara Y, Mizuno H, Chun J. Lysophospholipid receptors in drug discovery. Exp Cell Res. 333:171–7, 2015.

17. Gowda SGB, Gao ZJ, Chen Z, Abe T, Hori S, Fukiya S, et al. Untargeted lipidomic analysis of plasma from high-fat diet-induced obese rats using UHPLC-linear trap quadrupole-OrbitrapMS. Anal Sci. 36:821–8, 2020.

18. Furukawa T, Fuda H, Miyanaga S, Watanabe C, Chiba H, Hui SP. Rapid tin-mediated access to a lysophosphatidylethanolamine (LPE) library: application to positional LC/MS analysis for hepatic LPEs in nonalcoholic steatohepatitis model mice. Chem Phys Lipids. 200:133–8, 2016.

19. Koistinen KM, Suoniemi M, Simolin H, Ekroos K. Quantitative lysophospholipidomics in human plasma and skin by LC-MS/MS. Anal Bioanal Chem. 407:5091–9, 2015.

20. Ahmed A,Wong RJ, Harrison SA. Nonalcoholic fatty liver disease review: diagnosis, treatment, and outcomes. Clin Gastroenterol Hepatol. 13:2062–70, 2015.

21. Siddabasave SG, Fuda H, Yamamoto Y, Chiba H, Hui SP. Asimple and efficient method for synthesis of sn-glycerophosphoethanolamine. Lipids. 55:395–401, 2020.

22. Hui SP, Murai T, Yoshimura T, Chiba H, Kurosawa T. Simple Chemical Syntheses of TAG Monohydroperoxides. Lipids. 38:1287–1292, 2003.

23. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 37:911–7, 1959.

24. Fujii Y, Nouso K, Matsushita H, Kariyama K, Sakurai T, Takahashi Y, et al. Low-density lipoprotein (LDL)-triglyceride and its ratio to LDLcholesterol as diagnostic biomarkers for nonalcoholic steatohepatitis. J Appl Lab Med. 1–10, 2020.

25. Chen Z, Wu Y, Nagano M, Ueshiba K, Furukawa E, Yamamoto Y, et al. Lipidomic profiling of dairy cattle oocytes by high performance liquid chromatography-high resolution tandem mass spectrometry for developmental competence markers. Theriogenology. 144:56–66, 2020.

26. Sud M, Fahy E, Cotter D, Brown A, Dennis EA, Glass CK, et al. LMSD: LIPID MAPS structure database. Nucleic Acids Res. 35:527–32, 2007.

27. Yamamoto Y, Furukawa T, Takeda S, Kashida H, Chiba H, Hui SP. Examining the effect of regioisomerism on the physico-chemical properties of lysophosphatidylethanolamine-containing liposomes using fluoro probes. Chem Phys Lipids. 216:9–16, 2018.

28. Tanaka N, Matsubara T, Krausz KW, Patterson AD, Gonzalez FJ. Disruption of phospholipid and bile acid homeostasis in mice with nonalcoholic steatohepatitis. Hepatology. 56:118–29, 2012.

29. Law SH, Chan ML, Marathe GK, Parveen F, Chen CH, Ke LY. An updated review of lysophosphatidylcholine metabolism in human diseases. Int J Mol Sci. 20:1–24, 2019.

30. Hishikawa D, Shindou H, Kobayashi S, Nakanishi H, Taguchi R, Shimizu T. Discovery of a lysophospholipid acyltransferase family essential for membrane asymmetry and diversity. Proc Natl Acad Sci U S A. 105:2830– 5, 2008.

31. Gotoh N, Noguchi Y, Ishihara A, Yamaguchi K, Mizobe H, Nagai T, et al. Highly unsaturated fatty acid might act as an antioxidant in emulsion system oxidized by azo compound. J Oleo Sci. 59: 631–9, 2010.

32. Patel D, Witt SN. Ethanolamine and phosphatidylethanolamine: partners in health and disease. Oxidative Med Cell Longev. 2017. https://doi.org/10.1155/2017/4829180.

33. Viswanath P, Radoul M, Izquierdo-Garcia JL, Ong WQ, Luchman HA, Cairncross JG, et al. 2-Hydroxyglutarate-mediated autophagy of the endoplasmic reticulumleads to an unusual downregulation of phospholipid biosynthesis in mutant Idh1 gliomas. Cancer Res. 78:2290– 304, 2018.

34. Lebeaupin C, Vallée D, Hazari Y, Hetz C, Chevet E, Bailly-Maitre B. Endoplasmic reticulum stress signalling and the pathogenesis of nonalcoholic fatty liver disease. J Hepatol. 69:927–47, 2018.

35. Wang A, Loo R, Chen Z, Dennis EA. Regiospecificity and catalytic triad of lysophospholipase I. J Biol Chem. 272:22030–22036, 1997.

36. Shindou H, Hishikawa D, Harayama T, Eto M, Shimizu T. Generation of membrane diversity by lysophospholipid acyltransferases. J Biochem. 154:21–28, 2013.

37. Kim HJ, Kim JH, Noh S, Hur HJ, Sung MJ, Hwang JT, Park JH, Yang HJ, Kim MS, Kwon DY, Yoon SH. Metabolomic analysis of livers and serum from high-fat diet induced obese mice. J Proteome Res. 10:722–731, 2011.

38. Corrêa R, Silva LFF, Ribeiro DJS, Almeida R das N, Santos I de O, Corrêa LH, de Sant’Ana LP, Assunção LS, Bozza PT, Magalhães KG. Lysophosphatidylcholine Induces NLRP3 Inflammasome-Mediated Foam Cell Formation and Pyroptosis in Human Monocytes and Endothelial Cells. Front Immunol. 10:1–15, 2020.

39. Kakisaka K, Cazanave SC, Fingas CD, Guicciardi ME, Bronk SF, Werneburg NW, Mott JL, Gores GJ. Mechanisms of lysophosphatidylcholine-induced hepatocyte lipoapoptosis. Am J Physiol - Gastrointest Liver Physiol. 302:77–84, 2012.

40. Zimmermann R, Strauss JG, Haemmerle G, Schoiswohl G, BirnerGruenberger R, Riederer M, Lass A, Neuberger G, Eisenhaber F, Hermetter A, Zechner R. Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science. (80- ) 306:1383–1386, 2004.

41. Jenkins CM, Mancuso DJ, Yan W, Sims HF, Gibson B, Gross RW. Identification, cloning, expression, and purification of three novel human calcium-independent phospholipase A2 family members possessing triacylglycerol lipase and acylglycerol transacylase activities. J Biol Chem. 279:48968–48975, 2004.

42. Turpin SM, Hoy AJ, Brown RD, Garcia Rudaz C, Honeyman J, Matzaris M, Watt MJ. Adipose triacylglycerol lipase is a major regulator of hepatic lipid metabolism but not insulin sensitivity in mice. Diabetologia. 54:146– 156, 2011.

43. Antal O, Péter M, Hackler L, Mán I, Szebeni G, Ayaydin F, Hideghéty K, Vigh L, Kitajka K, Balogh G, Puskás LG. Lipidomic analysis reveals a radiosensitizing role of gamma-linolenic acid in glioma cells. Biochim Biophys Acta - Mol Cell Biol Lipids. 1851:1271–1282, 2015.

44. Yi J, Zhu J, Wu J, Thompson CB, Jiang X. Oncogenic activation of PI3KAKT-mTOR signaling suppresses ferroptosis via SREBP-mediated lipogenesis. Proc Natl Acad Sci. 117:202017152, 2020.

45. Vida M, Gavito AL, Pavoń FJ, Bautista D, Serrano A, Suarez J, Arrabal S, Decara J, Romero-Cuevas M, De Fonseca FR, Baixeras E. Chronic administration of recombinant IL-6 upregulates lipogenic enzyme expression and aggravates high-fat-diet-induced steatosis in IL-6- deficient mice. DMM Dis Model Mech. 8:721–731, 2015.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る