リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「一過性中大脳動脈閉塞モデルにおけるストレス誘導性tRNA切断およびtiRNA発現に関する研究」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

一過性中大脳動脈閉塞モデルにおけるストレス誘導性tRNA切断およびtiRNA発現に関する研究

佐藤 加奈子 東北大学

2021.03.25

概要

【背景】脳卒中は死亡あるいは永続的で重篤な後遺症を呈することも多く、死亡および要介護の原因疾病の上位を占める。脳卒中の半数以上を占める脳梗塞においては、脳虚血そのものによる一次的脳損傷に加え、再開通療法や自然再開通による血流再開を得られた場合であっても、虚血再灌流障害による二次的脳損傷が転帰の悪化をきたす。虚血再灌流障害は脳浮腫や出血性梗塞など重篤な二次的脳損傷の原因となり、脳梗塞後の転帰を悪化させる。そのため、虚血再灌流障害の軽減が脳梗塞後の転帰改善に重要であり、虚血再灌流障害の早期診断や治療法、治療反応性のバイオマーカーの開発が望まれる。そこで、今回私は stress-induced angiogenin-cleavage mediated tRNA halves (tiRNA)に注目した。細胞内の tRNA は種々のストレスに応答して、RNA 分解酵素である angiogenin により切断され、tiRNA と呼ばれる RNA フラグメントが形成され、脳虚血再灌流障害後に tiRNA の上昇をきたすことが報告されている。しかしながら、tRNA の切断・修飾や tiRNA 発現のメカニズムの詳細は不明な点が多い。そのため、虚血再灌流障害における tRNA 切断・修飾、あるいは tiRNA 発現のプロファイルおよびメカニズムを明らかにすることを目的とした。また、神経保護作用を有するミノサイクリンによる tRNA の切断・修飾や tiRNA 発現への関与についても検討した。

【方法】ラット一過性中大脳動脈閉塞モデルを作成し脳虚血再灌流障害を誘導した。脳虚血再灌流直後、脳虚血再灌流 1 時間後、6 時間後、24 時間後、72 時間後にサンプリングを行い、SYBR Gold 染色・イムノノーザンブロッティング法により tRNA の切断と tiRNA の発現を、定量的リアルタイム PCR 法により RNA 切断・修飾酵素の発現を評価した。また、神経保護薬ミノサイクリン 3 mg/kg を再灌流直後に静脈注射し、再灌流 24 時間後に、クレシルバイオレット染色により脳梗塞巣の面積を、SYBR Gold 染色・イムノノーザンブロッティング法・定量的リアルタイム PCR 法により tRNA の切断と tiRNA の発現を解析した。

【結果】一過性中大脳動脈閉塞モデルにおいて、脳虚血再灌流 24 時間後に tiRNA 発現が最大値を示した。脳虚血再灌流後の tiRNA 発現の経時的変化は tRNA の種類毎に異なっていた。RNA 修飾酵素と tiRNA 発現の経時的変化に相関関係がみられた。ミノサイクリン投与群では、vehicle 群と比較して脳梗塞巣の縮小を認め、tiRNA 発現の明らかな減少がみられた。しかしながら、脳虚血再灌流 24 時間後の RNA 切断・修飾酵素の発現量は、ミノサイクリン投与群と vehicle 群間で有意差を認めなかった。

【考察】本研究により脳虚血再灌流障害後の tiRNA 発現と RNA 切断・修飾酵素の経時的変化が明らかとなった。また、神経保護薬ミノサイクリンの投与が tiRNA の発現低下をもたらすが、RNA 切断・修飾酵素の発現への影響は認められず、ミノサイクリンによる tiRNA 発現制御メカニズムは不明である。今後、脳虚血再灌流後の tiRNA発現メカニズムの詳細な検討が必要であるが、tiRNA が脳虚血再灌流障害の早期診断や神経保護薬に対する治療反応性のバイオマーカーとして応用可能である可能性が示唆された。

この論文で使われている画像

参考文献

1) GBD 2017 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 392:1789–1858, 2018.

2) 厚生労働省. 平成 30 年 (2018) 人口動態統計(確定数)の概要. 2019.

3) 厚生労働省. 平成 28 年 国民生活基礎調査の概況. 2017.

4) Rashad S, Niizuma K, Tominaga T. tRNA cleavage: a new insight. Neural Regen Res 15:47–52, 2020.

5) Elkordy A, Mishima E, Niizuma K, et al. Stress-induced tRNA cleavage and tiRNA generation in rat neuronal PC12 cells. J Neurochem 146:560–569, 2018.

6) Elkordy A, Rashad S, Shehabeldeen H, et al. tiRNAs as a novel biomarker for cell damage assessment in in vitro ischemia-reperfusion model in rat neuronal PC12 cells. Brain Res 1714:8–17, 2019.

7) Mishima E, Inoue C, Saigusa D, et al. Conformational change in transfer RNA is an early indicator of acute cellular damage. J Am Soc Nephrol 25 (10):2316–2326, 2014.

8) Emara MM, Ivanov P, Hickman T, et al. Angiogenin-induced tRNA-derived stress- induced RNAs promote stress-induced stress granule assembly. J Biol Chem 285:10959–10968, 2010.

9) Ivanov P, Emara MM, Villen J, et al. Angiogenin-induced tRNA fragments inhibit translation initiation. Mol Cell 43:613–623, 2011.

10) Yamasaki S, Ivanov P, Hu GF, et al. Angiogenin cleaves tRNA and promotes stress- induced translational repression. J Cell Biol 185:35–42, 2009.

11) Ivanov P, O’Day E, Emara MM, et al. G-quadruplex structures contribute to the neuroprotective effects of angiogenin-induced tRNA fragments. Proc Natl Acad Sci U S A 111:18201–18206, 2014.

12) Lyons SM, Achorn C, Kedersha NL, et al. YB-1 regulates tiRNA-induced stress granule formation but not translational repression. Nucleic Acids Res 44:6949–6960, 2016.

13) Li Q, Hu B, Hu GW, et al. tRNA-derived small non-coding RNAs in response to ischemia inhibit angiogenesis. Sci Rep 6:20850, 2016.

14) Tikka TM, Koistinaho JE. Minocycline provides neuroprotection against N-methyl- D-aspartate neurotoxicity by inhibiting microglia. J Immunol 166(12):7527-33, 2001.

15) Carty ML, Wixey JA, Colditz PB, et al. Post-insult minocycline treatment attenuates hypoxia-ischemia-induced neuroinflammation and white matter injury in the neonatal rat: a comparison of two different dose regimens. Int J Dev Neurosci 26(5):477-85, 2008.

16) Machado LS, Kozak A, Ergul A, et al. Delayed minocycline inhibits ischemia-activated matrix metalloproteinases 2 and 9 after experimental stroke. BMC Neurosci 7: 56, 2006.

17) Lin S, Zhang Y, Dodel R, et al. Minocycline blocks nitric oxide-induced neurotoxicity by inhibition p38 MAP kinase in rat cerebellar granule neurons. Neurosci Lett 315(1-2):61-4, 2001.

18) Arvin KL, Han BH, Du Y, et al. Minocycline markedly protects the neonatal brain against hypoxic-ischemic injury. Ann Neurol 52(1):54-61, 2002.

19) Faheem H, Mansour A, Elkordy A, et al. Neuroprotective effects of minocycline and progesterone on white matter injury after focal cerebral ischemia. J Clin Neurosci 64:206–213, 2019.

20) Jin Z, Liang J, Wang J, et al. MCP-induced protein 1 mediates the minocycline- induced neuroprotection against cerebral ischemia/reperfusion injury in vitro and in vivo. J Neuroinflammation 12:39, 2015.

21) Mishima E, Jinno D, Akiyama Y, et al. Immuno-northern blotting: detection of RNA modifications by using antibodies against modified nucleosides. PloS One 10 e0143756, 2015.

22) Mishima E, Takaaki Abe. Immuno-northern blotting: detection of modified RNA using gel separation and antibodies to modified nucleosides. Methods Mol Biol 1870:179-187, 2019.

23) Pfaffi MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29 e45, 2001.

24) Rashad S, Niizuma K, Saigusa D, st al. Intracellular S1P levels dictate fate of different regions of the hippocampus following transient global cerebral ischemia. Neuroscience 384:188–202, 2018.

25) Rashad S, Niizuma K, Sato-Maeda M, et al. Early BBB breakdown and subacute inflammasome activation and pyroptosis as a result of cerebral venous thrombosis. Brain Res 1699:54–68, 2018.

26) Furia A, Moscato M, Cali G, et al. The ribonuclease/angiogenin inhibitor is also present in mitochondria and nuclei. FEBS Lett 585:613–617, 2011.

27) Saikia M, Krokowski D, Guan BJ, et al. Genome-wide identification and quantitative analysis of cleaved tRNA fragments induced by cellular stress. J Biol Chem 287:42708–42725, 2012.

28) Pizzo E, Sarcinelli C, Sheng J, et al. Ribonuclease/angiogenin inhibitor 1 regulates stress-induced subcellular localization of angiogenin to control growth and survival. J Cell Sci 126:4308–4319, 2013.

29) Thomas SP, Hoang TT, Ressler VT, et al. Human angiogenin is a potent cytotoxin in the absence of ribonuclease inhibitor. RNA 24:1018–1027, 2018.

30) Liu F, Clark W, Luo G, et al. ALKBH1-Mediated tRNA Demethylation regulates translation. Cell 167(816–828) e816, 2016.

31) Tuorto F, Liebers R, Musch T, et al. RNA cytosine methylation by Dnmt2 and NSun2 promotes tRNA stability and protein synthesis. Nat Struct Mol Biol 19:900–905, 2012.

32) Okamoto M, Fujiwara M, Hori M, et al. tRNA modifying enzymes, NSUN2 and METTL1, determine sensitivity to 5-fluorouracil in HeLa cells. PLoS Genet 10 e1004639, 2014.

33) Martinez-Zamora A, Meseguer S, Esteve JM, et al. Defective expression of the mitochondrial-tRNA modifying enzyme GTPBP3 triggers AMPK-mediated adaptive responses involving complex I assembly factors, uncoupling protein 2, and the mitochondrial pyruvate carrier. PloS One 10 e0144273, 2015.

34) Chen D, Li F, Yang Q, et al. The defective expression of gtpbp3 related to tRNA modification alters the mitochondrial function and development of zebrafish. Int J Biochem Cell Biol 77:1–9, 2016.

35) Boutoual R, Meseguer S, Villarroya M, et al. Defects in the mitochondrial-tRNA modification enzymes MTO1 and GTPBP3 promote different metabolic reprogramming through a HIFPPARgamma-UCP2-AMPK axis. Sci Rep 8:1163, 2018.

36) He Z, Sun S, Waqas M, et al. Reduced TRMU expression increases the sensitivity of hair-cell-like HEI-OC-1 cells to neomycin damage in vitro. Sci Rep 6:29621, 2016.

37) Goncalves KA, Silberstein L, Li S, et al. Angiogenin promotes hematopoietic regeneration by dichotomously regulating quiescence of stem and progenitor cells. Cell 166:894–906, 2016.

38) Shu J, Huang M, Tian Q, et al. Downregulation of angiogenin inhibits the growth and induces apoptosis in human bladder cancer cells through regulating AKT/ mTOR signaling pathway. J Mol Histol 46:157–171, 2015.

39) Schaefer M, Pollex T, Hanna K, et al. RNA methylation by Dnmt2 protects transfer RNAs against stress-induced cleavage. Genes Dev 24:1590–1595, 2010.

40) Zhu H, Zhang Y, Shi Z, et al. The neuroprotection of liraglutide against ischaemia- induced apoptosis through the activation of the PI3K/AKT and MAPK pathways. Sci Rep 6:26859, 2016.

41) Shen Z, Zheng Y, Wu J, et al. PARK2-dependent mitophagy induced by acidic postconditioning protects against focal cerebral ischemia and extends the reperfusion window. Autophagy 13:473–485, 2017.

42) Villarroya M, Prado S, Esteve JM, et al. Characterization of human GTPBP3, a GTP-binding protein involved in mitochondrial tRNA modification. Mol Cell Biol 28:7514–7531, 2008.

43) Guan MX, Yan Q, Li X, et al. Mutation in TRMU related to transfer RNA modification modulates the phenotypic expression of the deafness-associated mitochondrial 12S ribosomal RNA mutations. Am J Hum Genet 79:291–302, 2006.

44) Kuzmenko AV, Levitskii SA, Vinogradova EN, et al. Protein biosynthesis in mitochondria. Biochemistry (Mosc) 78:855–866, 2013.

45) Rashad S, Tominaga T, Niizuma K. The cell and stress-specific canonical and noncanonical tRNA cleavage. J Cell Physiol Oct 12, 2020. Online ahead of print.

46) Rashad S, Han X, Sato K, et al. The stress specific impact of ALKBH1 on tRNA cleavage and tiRNA generation. RNA Biol 17:1092-1103, 2020.

47) Rashad S, Niizuma K, Tominaga T. tRNA cleavage: a new insight. Neural Regen Res 15:47-52, 2020.

48) Torrent M, Chaklancon G, Groot NS, et al. Cells alter their tRNA abundance to selectively regulate protein synthesis during stress conditions. Sci Sig 11(546):eaat6409, 2018.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る