リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Optical physics with topological lightwaves」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Optical physics with topological lightwaves

藤田, 浩之 東京大学 DOI:10.15083/0002001873

2021.10.04

概要

Optical physics is a study of light-matter interaction. In the past decades, controlling electric and magnetic properties of matters with laser beams has been actively explored in the broad region of condensed matter physics supported by the developments in laser technologies. In this thesis, we discuss how optical physics can be even more promising with the help of topological lightwaves, also known as structured lights or singular lights. Topological lightwaves such as optical vortex and cylindrical vector beam are characterized by their topologically nontrivial spatial profiles, and their applications like microscopes and tweezers have been intensively studied in the field of optics in the name of singular optics. However, their applications for optical physics have been lacking. In this thesis, we propose several novel ways of controlling electromagnetic properties of matters with topological lightwaves.

Our analysis based on the (stochastic) Landau-Lifshitz-Gilbert equation revealed that optical vortices are potentially useful for ultrafast magnetism, namely optical control of magnetic textures. We show that the characteristic spatial profile and the orbital angular momentum of optical vortices provide a way of controlling the spin texture of (chiral) magnets in an unconventional way. We can exploit the chiral nature of optical vortices to design spin waves and generate topological magnetic defects. The ring-shaped intensity distribution of optical vortices enables us to systematically generate a family of topological defects such as skyrmions and skyrmioniums in chiral ferro- and antiferromagnets.

The unique focusing property of cylindrical vector beams allows us to control electric and magnetic fields applied to a target independently if the target is sufficiently smaller than the wavelength of the beams. At terahertz or far-infrared frequencies, where various interesting phenomena of solid-state-physics take place, this situation is easily realized.
Hence, cylindrical vector beams potentially have a substantial impact on condensed-matter physics [and (bio-) chemistry]. We propose various applications of cylindrical vector beams for condensed-matter uses; nonequilibrium extension of magnetic oscillation measurements applicable to magnetic metals, novel magnetic field spectroscopy for conductors and dielectrics, imaging and control of circulating edge currents in topological materials, and Floquet engineering of nonequilibrium states of matters.

From condensed-matter physics to biochemistry, topological lightwaves would make significant contributions by shedding a new light on optical properties of atoms, molecules, and solids. A new research field of ``singular optical physics’’ would emerge at the intersection of optical physics and singular optics, deepening our understanding of optical properties of matters.

参考文献

[1] A Einstein. Zur quantentheorie der strahlung. Physikalische Zeitschrift, 18:121–128, 1917.

[2] D. Leibfried, R. Blatt, C. Monroe, and D. Wineland. Quantum dy- namics of single trapped ions. Rev. Mod. Phys., 75:281–324, Mar 2003.

[3] Immanuel Bloch, Jean Dalibard, and Wilhelm Zwerger. Many-body physics with ultracold gases. Rev. Mod. Phys., 80:885–964, Jul 2008.

[4] Christian Gross and Immanuel Bloch. Quantum simulations with ul- tracold atoms in optical lattices. Science, 357(6355):995–1001, 2017.

[5] M. Gring, M. Kuhnert, T. Langen, T. Kitagawa, B. Rauer, M. Schre- itl, I. Mazets, D. Adu Smith, E. Demler, and J. Schmiedmayer. Re- laxation and prethermalization in an isolated quantum system. Sci- ence, 2012.

[6] Jeff Steinhauer. Observation of quantum hawking radiation and its entanglement in an analogue black hole. Nature Physics, 12:959 EP –, 08 2016.

[7] Donna Strickland and Gerard Mourou. Compression of amplified chirped optical pulses. Optics Communications, 56(3):219 – 221, 1985.

[8] R. Stoian, D. Ashkenasi, A. Rosenfeld, and E. E. B. Campbell. Coulomb explosion in ultrashort pulsed laser ablation of Al2O3. Phys. Rev. B, 62:13167–13173, Nov 2000.

[9] Mauro Nisoli, Piero Decleva, Francesca Calegari, Alicia Palacios, and Fernando Mart´ın. Attosecond electron dynamics in molecules. Chem- ical Reviews, 117(16):10760–10825, 2017. PMID: 28488433.

[10] M. Uiberacker, Th. Uphues, M. Schultze, A. J. Verhoef, V. Yakovlev, M. F. Kling, J. Rauschenberger, N. M. Kabachnik, H. Schroder, M. Lezius, K. L. Kompa, H. G. Muller, M. J. J. Vrakking, S. Hendel, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz. Attosec- ond real-time observation of electron tunnelling in atoms. Nature, 446:627 EP –, 04 2007.

[11] Masayoshi Tonouchi. Cutting-edge terahertz technology. Nature Pho- tonics, 1:97 EP –, 02 2007.

[12] S S Dhillon, M S Vitiello, E H Linfield, A G Davies, Matthias C Hoff- mann, John Booske, Claudio Paoloni, M Gensch, P Weightman, G P Williams, E Castro-Camus, D R S Cumming, F Simoens, I Escorcia- Carranza, J Grant, Stepan Lucyszyn, Makoto Kuwata-Gonokami, Kuniaki Konishi, Martin Koch, Charles A Schmuttenmaer, Tyler L Cocker, Rupert Huber, A G Markelz, Z D Taylor, Vincent P Wal- lace, J Axel Zeitler, Juraj Sibik, Timothy M Korter, B Ellison, S Rea, P Goldsmith, Ken B Cooper, Roger Appleby, D Pardo, P G Huggard, V Krozer, Haymen Shams, Martyn Fice, Cyril Renaud, Alwyn Seeds, Andreas St¨ohr, Mira Naftaly, Nick Ridler, Roland Clarke, John E Cunningham, and Michael B Johnston. The 2017 terahertz science and technology roadmap. Journal of Physics D: Applied Physics, 50(4):043001, 2017.

[13] Koichi Katsumata. High-frequency electron spin resonance in mag- netic systems. Journal of Physics: Condensed Matter, 12(47):R589, 2000.

[14] Y Mukai, H Hirori, T Yamamoto, H Kageyama, and K Tanaka. Nonlinear magnetization dynamics of antiferromagnetic spin reso- nance induced by intense terahertz magnetic field. New J. Phys., 18(1):013045, 2016.

[15] Tobias Kampfrath, Alexander Sell, Gregor Klatt, Alexej Pashkin, Sebastian Mahrlein, Thomas Dekorsy, Martin Wolf, Manfred Fiebig, Alfred Leitenstorfer, and Rupert Huber. Coherent terahertz control of antiferromagnetic spin waves. Nat. Photon., 5(1):31–34, 01 2011.

[16] Zuanming Jin, Zolt´an Mics, Guohong Ma, Zhenxiang Cheng, Mis- cha Bonn, and Dmitry Turchinovich. Single-pulse terahertz coherent control of spin resonance in the canted antiferromagnet YFeO3, me- diated by dielectric anisotropy. Phys. Rev. B, 87:094422, Mar 2013.

[17] Ryusuke Matsunaga, Naoto Tsuji, Hiroyuki Fujita, Arata Sugioka, Kazumasa Makise, Yoshinori Uzawa, Hirotaka Terai, Zhen Wang, Hideo Aoki, and Ryo Shimano. Light-induced collective pseudospin precession resonating with Higgs mode in a superconductor. Science, 345(6201):1145–1149, 2014.

[18] Ryusuke Matsunaga, Yuki I. Hamada, Kazumasa Makise, Yoshinori Uzawa, Hirotaka Terai, Zhen Wang, and Ryo Shimano. Higgs Am- plitude Mode in the BCS Superconductors Nb1−xTixN Induced by Terahertz Pulse Excitation. Phys. Rev. Lett., 111:057002, Jul 2013.

[19] Ryogo Kubo and Kazuhisa Tomita. A General Theory of Magnetic Resonance Absorption. Journal of the Physical Society of Japan, 9(6):888–919, 2018/05/17 1954.

[20] Marin Bukov, Luca D’Alessio, and Anatoli Polkovnikov. Univer- sal high-frequency behavior of periodically driven systems: from dy- namical stabilization to floquet engineering. Advances in Physics, 64(2):139–226, 2015.

[21] Takashi Oka and Sota Kitamura. Floquet engineering of quantum materials. arXiv:1804.03212, 2018.

[22] Sho Higashikawa, Hiroyuki Fujita, and Masahiro Sato. Floquet en- gineering of classical systems. arXiv:1810.01103, 2018.

[23] A J Daley, C Kollath, U Schollwock, and G Vidal. Time-dependent density-matrix renormalization-group using adaptive effective hilbert spaces. Journal of Statistical Mechanics: Theory and Experiment, 2004(04):P04005, 2004.

[24] Takashi Oka and Hideo Aoki. Photovoltaic hall effect in graphene. Phys. Rev. B, 79:081406, Feb 2009.

[25] Takahiro Mikami, Sota Kitamura, Kenji Yasuda, Naoto Tsuji, Takashi Oka, and Hideo Aoki. Brillouin-wigner theory for high- frequency expansion in periodically driven systems: Application to floquet topological insulators. Phys. Rev. B, 93:144307, Apr 2016.

[26] Satoru Sugano and Norimichi Kojima, editors. Magneto-Optics. Springer, 2000.

[27] E. Beaurepaire, J.-C. Merle, A. Daunois, and J.-Y. Bigot. Ultrafast spin dynamics in ferromagnetic nickel. Phys. Rev. Lett., 76:4250– 4253, May 1996.

[28] Andrei Kirilyuk, Alexey V. Kimel, and Theo Rasing. Ultrafast opti- cal manipulation of magnetic order. Rev. Mod. Phys., 82:2731–2784, Sep 2010.

[29] Tian-Min Liu, Tianhan Wang, Alexander H. Reid, Matteo Savoini, Xiaofei Wu, Benny Koene, Patrick Granitzka, Catherine E. Graves, Daniel J. Higley, Zhao Chen, Gary Razinskas, Markus Hantschmann, Andreas Scherz, Joachim St¨ohr, Arata Tsukamoto, Bert Hecht, Alexey V. Kimel, Andrei Kirilyuk, Theo Rasing, and Hermann A. Du¨rr. Nanoscale Confinement of All-Optical Magnetic Switching in TbFeCo - Competition with Nanoscale Heterogeneity. Nano Lett., 15(10):6862–6868, 2015. PMID: 26312732.

[30] S. Mangin, M. Gottwald, C-H. Lambert, D. Steil, V. Uhl´ıˇr, L. Pang, M. Hehn, S. Alebrand, M. Cinchetti, G. Malinowski, Y. Fain- man, M. Aeschlimann, and E. E. Fullerton. Engineered materials for all-optical helicity-dependent magnetic switching. Nat. Mater., 13(3):286–292, 03 2014.

[31] C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and Th. Rasing. All-optical magnetic recording with circu- larly polarized light. Phys. Rev. Lett., 99:047601, Jul 2007.

[32] Shintaro Takayoshi, Hideo Aoki, and Takashi Oka. Magnetization and phase transition induced by circularly polarized laser in quantum magnets. Phys. Rev. B, 90(085150):085150, Aug 2014.

[33] Shintaro Takayoshi, Masahiro Sato, and Takashi Oka. Laser-induced magnetization curve. Phys. Rev. B, 90:214413, Dec 2014.

[34] J´erˆome Hurst, Paul-Antoine Hervieux, and Giovanni Manfredi. Spin current generation by ultrafast laser pulses in ferromagnetic nickel films. Phys. Rev. B, 97:014424, Jan 2018.

[35] A Fognini, T U Michlmayr, A Vaterlaus, and Y Acremann. Laser- induced ultrafast spin current pulses: a thermodynamic approach. Journal of Physics: Condensed Matter, 29(21):214002, 2017.

[36] Masahiro Sato, Shintaro Takayoshi, and Takashi Oka. Laser-Driven Multiferroics and Ultrafast Spin Current Generation. Phys. Rev. Lett., 117:147202, 2016.

[37] Yoshinori Tokura, Shinichiro Seki, and Naoto Nagaosa. Multiferroics of spin origin. Rep. Prog. Phys., 77(7):076501, 2014.

[38] Sang-Wook Cheong and Maxim Mostovoy. Multiferroics: a magnetic twist for ferroelectricity. Nat. Mater., 6(1):13–20, 01 2007.

[39] Masahito Mochizuki and Naoto Nagaosa. Theoretically Predicted Pi- cosecond Optical Switching of Spin Chirality in Multiferroics. Phys. Rev. Lett., 105:147202, Sep 2010.

[40] Kazuaki Takasan, Akito Daido, Norio Kawakami, and Youichi Yanase. Laser-induced topological superconductivity in cuprate thin films. Phys. Rev. B, 95:134508, Apr 2017.

[41] Masahiro Sato, Yuki Sasaki, and Takashi Oka. Floquet Majorana Edge Mode and Non-Abelian Anyons in a Driven Kitaev Model. arXiv:1404.2010, 2014.

[42] David L. Andrews and Mohamed Babiker, editors. The Angular Momentum of Light. Cambridge University Press, 2012. Cambridge Books Online.

[43] L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerd- man. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A, 45:8185–8189, Jun 1992.

[44] J. Courtial, K. Dholakia, L. Allen, and M. J. Padgett. Gaussian beams with very high orbital angular momentum. Opt. Communica- tions, 144(4):210–213, 1997.

[45] A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett. Intrinsic and Extrinsic Nature of the Orbital Angular Momentum of a Light Beam. Phys. Rev. Lett., 88:053601, Jan 2002.

[46] J. Bahrdt, K. Holldack, P. Kuske, R. Mu¨ller, M. Scheer, and P. Schmid. First observation of photons carrying orbital angular momentum in undulator radiation. Phys. Rev. Lett., 111:034801, Jul 2013.

[47] Ebrahim Karimi, Sebastian A Schulz, Israel De Leon, Hammam Qas- sim, Jeremy Upham, and Robert W Boyd. Generating optical orbital angular momentum at visible wavelengths using a plasmonic meta- surface. Light: Science &Amp; Applications, 3:e167 EP –, 05 2014.

[48] L Paterson, M P MacDonald, Jochen Arlt, W Sibbett, P E Bryant, and K Dholakia. Controlled rotation of optically trapped microscopic particles. Science, 292(5518):912–914, 2001.

[49] M. F. Andersen, C. Ryu, Pierre Clad´e, Vasant Natarajan, A. Vaziri, K. Helmerson, and W. D. Phillips. Quantized Rotation of Atoms from Photons with Orbital Angular Momentum. Phys. Rev. Lett., 97:170406, Oct 2006.

[50] Stefan Bretschneider, Christian Eggeling, and Stefan W. Hell. Break- ing the Diffraction Barrier in Fluorescence Microscopy by Optical Shelving. Phys. Rev. Lett., 98:218103, May 2007.

[51] Junichi Hamazaki, Ryuji Morita, Keisuke Chujo, Yusuke Kobayashi, Satoshi Tanda, and Takashige Omatsu. Optical-vortex laser ablation. Opt. Express, 18(3):2144–2151, Feb 2010.

[52] Takashige Omatsu, Keisuke Chujo, Katsuhiko Miyamoto, Masahito Okida, Kazuki Nakamura, Nobuyuki Aoki, and Ryuji Morita. Metal microneedle fabrication using twisted light with spin. Opt. Express, 18(17):17967–17973, Aug 2010.

[53] Fuyuto Takahashi, Kohei Toyoda, Shun Takizawa, Katsuhiko Miyamoto, Ryuji Morita, and Takashige Omatsu. Chiral structure control of metal nano-needles fabrictaed by optical vortex laser ab- lation. In CLEO: 2013, page CM3H.6. Optical Society of America, 2013.

[54] Stefan W. Hell. Nobel lecture: Nanoscopy with freely propagating light. Rev. Mod. Phys., 87:1169–1181, Oct 2015.

[55] Nenad Bozinovic, Yang Yue, Yongxiong Ren, Moshe Tur, Poul Kris- tensen, Hao Huang, Alan E. Willner, and Siddharth Ramachandran. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science, 340(6140):1545–1548, 2013.

[56] Kohei Toyoda, Katsuhiko Miyamoto, Nobuyuki Aoki, Ryuji Morita, and Takashige Omatsu. Using Optical Vortex To Control the Chiral- ity of Twisted Metal Nanostructures. Nano Lett., 12(7):3645–3649, 07 2012.

[57] Qiwen Zhan. Cylindrical vector beams: from mathematical concepts to applications. Adv. Opt. Photon., 1(1):1–57, Jan 2009.

[58] K. S. Youngworth and T. G Brown. Focusing of high numerical aper- ture cylindrical-vector beams. Opt. Express, 7(2):77–87, Jul 2000.

[59] Qiwen Zhan and James R. Leger. Focus shaping using cylindrical vector beams. Opt. Express, 10(7):324–331, Apr 2002.

[60] B. Richards, E. Wolf, and Dennis Gabor. Electromagnetic diffraction in optical systems, ii. structure of the image field in an aplanatic system. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 253(1274):358–379, 1959.

[61] Hiroyuki Fujita and Masahiro Sato. Ultrafast generation of skyrmionic defects with vortex beams: Printing laser profiles on mag- nets. Phys. Rev. B, 95:054421, Feb 2017.

[62] Hiroyuki Fujita and Masahiro Sato. Encoding orbital angular mo- mentum of light in magnets. Phys. Rev. B, 96:060407, Aug 2017.

[63] Hiroyuki Fujita and Masahiro Sato. Nonequilibrium magnetic oscil- lation with cylindrical vector beams. Scientific Reports, 8(1):15738, 2018.

[64] Hiroyuki Fujita, Yasuhiro Tada, and Masahiro Sato. Accessing electromagnetic properties of matter with cylindrical vector beams. arXiv: 1811.10617, 2018.

[65] I. Dzyaloshinsky. A thermodynamic theory of “weak” ferromag- netism of antiferromagnetics. J. Phys. Chem. Solids, 4(4):241 – 255, 1958.

[66] Tˆoru Moriya. Anisotropic Superexchange Interaction and Weak Fer- romagnetism. Phys. Rev., 120:91–98, Oct 1960.

[67] Masahito Mochizuki. Spin-Wave Modes and Their Intense Excitation Effects in Skyrmion Crystals. Phys. Rev. Lett., 108:017601, Jan 2012.

[68] T. Jeong and W. E. Pickett. Implications of the B20 crystal struc- ture for the magnetoelectronic structure of MnSi. Phys. Rev. B, 70:075114, Aug 2004.

[69] S. Mu¨hlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A. Neubauer, R. Georgii, and P. B¨oni. Skyrmion Lattice in a Chiral Magnet. Science, 323(5916):915–919, 02 2009.

[70] A. Neubauer, C. Pfleiderer, B. Binz, A. Rosch, R. Ritz, P. G. Niklowitz, and P. B¨oni. Topological Hall Effect in the A Phase of MnSi. Phys. Rev. Lett., 102:186602, May 2009.

[71] C. Pappas, E. Leli`evre-Berna, P. Falus, P. M. Bentley, E. Moskvin, S. Grigoriev, P. Fouquet, and B. Farago. Chiral Paramagnetic Skyrmion-like Phase in MnSi. Phys. Rev. Lett., 102:197202, May 2009.

[72] X. Z. Yu, Y. Onose, N. Kanazawa, J. H. Park, J. H. Han, Y. Mat- sui, N. Nagaosa, and Y. Tokura. Real-space observation of a two- dimensional skyrmion crystal. Nature, 465(7300):901–904, 06 2010.

[73] W. Mu¨nzer, A. Neubauer, T. Adams, S. Mu¨hlbauer, C. Franz, F. Jonietz, R. Georgii, P. B¨oni, B. Pedersen, M. Schmidt, A. Rosch, and C. Pfleiderer. Skyrmion lattice in the doped semiconductor Fe1−xCoxSi. Phys. Rev. B, 81:041203, Jan 2010.

[74] X. Z. Yu, N. Kanazawa, Y. Onose, K. Kimoto, W. Z. Zhang, S. Ishi- wata, Y. Matsui, and Y. Tokura. Near room-temperature formation of a skyrmion crystal in thin-films of the helimagnet FeGe. Nat. Mater., 10(2):106–109, 02 2011.

[75] S. X. Huang and C. L. Chien. Extended Skyrmion Phase in Epitaxial FeGe(111) Thin Films. Phys. Rev. Lett., 108:267201, Jun 2012.

[76] Seonghoon Woo, Kai Litzius, Benjamin Kruger, Mi-Young Im, Lucas Caretta, Kornel Richter, Maxwell Mann, Andrea Krone, Robert M. Reeve, Markus Weigand, Parnika Agrawal, Ivan Lemesh, Mohamad- Assaad Mawass, Peter Fischer, Mathias Klaui, and Geoffrey S. D. Beach. Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets. Nat. Mater., 15(5):501–506, 05 2016.

[77] S. Seki and M. Mochizuki. Skyrmions in Magnetic Materials. Springer, 2016.

[78] A Bogdanov and A Hubert. Thermodynamically stable magnetic vortex states in magnetic crystals. J. Magn. Magn. Mater., 138:255– 269, 1994.

[79] A Bogdanov and A Hubert. The stability of vortex-like structures in uniaxial ferromagnets. J. Magn. Magn. Mater., 195(1):182–192, 1999.

[80] M. Finazzi, M. Savoini, A. R. Khorsand, A. Tsukamoto, A. Itoh, L. Du`o, A. Kirilyuk, Th. Rasing, and M. Ezawa. Laser-Induced Magnetic Nanostructures with Tunable Topological Properties. Phys. Rev. Lett., 110:177205, Apr 2013.

[81] Stavros Komineas and Nikos Papanicolaou. Skyrmion dynamics in chiral ferromagnets. Phys. Rev. B, 92:064412, Aug 2015.

[82] Xichao Zhang, Jing Xia, Yan Zhou, Daowei Wang, Xiaoxi Liu, Weisheng Zhao, and Motohiko Ezawa. Control and manipulation of a magnetic skyrmionium in nanostructures. Phys. Rev. B, 94:094420, Sep 2016.

[83] Shilei Zhang, Florian Kronast, Gerrit van der Laan, and Thorsten Hesjedal. Real-space observation of skyrmionium in a ferromagnet- magnetic topological insulator heterostructure. Nano Letters, 18(2):1057–1063, 2018. PMID: 29363315.

[84] T. Arima. Ferroelectricity induced by proper-screw type magnetic order. J. Phys. Soc. Jpn., 76(7):073702, 2016/11/23 2007.

[85] Hosho Katsura, Naoto Nagaosa, and Alexander V. Balatsky. Spin Current and Magnetoelectric Effect in Noncollinear Magnets. Phys. Rev. Lett., 95:057205, Jul 2005.

[86] Chenglong Jia, Shigeki Onoda, Naoto Nagaosa, and Jung Hoon Han. Microscopic theory of spin-polarization coupling in multiferroic tran- sition metal oxides. Phys. Rev. B, 76:144424, Oct 2007.

[87] Masahito Mochizuki, Nobuo Furukawa, and Naoto Nagaosa. Theory of Electromagnons in the Multiferroic Mn Perovskites: The Vital Role of Higher Harmonic Components of the Spiral Spin Order. Phys. Rev. Lett., 104:177206, Apr 2010.

[88] S. Seki, S. Ishiwata, and Y. Tokura. Magnetoelectric nature of skyrmions in a chiral magnetic insulator Cu2OSeO3. Phys. Rev. B, 86:060403, Aug 2012.

[89] Bernd Terhalle, Andreas Langner, Birgit P¨aivanranta, Vitaliy A. Guzenko, Christian David, and Yasin Ekinci. Generation of extreme ultraviolet vortex beams using computer generated holograms. Opt. Lett., 36(21):4143–4145, Nov 2011.

[90] Carlos Hern´andez-Garc´ıa, Antonio Pic´on, Julio San Rom´an, and Luis Plaja. Attosecond Extreme Ultraviolet Vortices from High-Order Harmonic Generation. Phys. Rev. Lett., 111:083602, Aug 2013.

[91] G. Alexander Gurevich and A. Gennadii Melkov. Magnetization Os- cillations and Waves. CRC Press, 1996.

[92] D. Daniel Stancil and Anil Prabhankar. Spin Waves. Springer US, 2009.

[93] Wanjun Jiang, Xichao Zhang, Guoqiang Yu, Wei Zhang, Xiao Wang, M. Benjamin Jungfleisch, John E. Pearson, Xuemei Cheng, Olle Heinonen, Kang L. Wang, Yan Zhou, Axel Hoffmann, and Suzanne G. E. te Velthuis. Direct observation of the skyrmion hall effect. Nature Phys., 13(2):162—169, 09 2017.

[94] Yuki Shiomi. Topological Hall Effect in Itinerant Helimagnets. Springer Japan, Tokyo, 2013.

[95] Takuya Satoh, Yuki Terui, Rai Moriya, Boris A. Ivanov, Kazuya Ando, Eiji Saitoh, Tsutomu Shimura, and Kazuo Kuroda. Direc- tional control of spin-wave emission by spatially shaped light. Nat. Photon., 6(10):662–666, 10 2012.

[96] Yusuke Hashimoto, Shunsuke Daimon, Ryo Iguchi, Yasuyuki Oikawa, Ka Shen, Koji Sato, Davide Bossini, Yutaka Tabuchi, Takuya Satoh, Burkard Hillebrands, Gerrit E. W. Bauer, Tom H. Johansen, Andrei Kirilyuk, Theo Rasing, and Eiji Saitoh. All-optical observation and reconstruction of spin wave dispersion. Nat. Commun., 8:15859, 06 2017.

[97] Reinier W. Heeres and Valery Zwiller. Subwavelength focusing of light with orbital angular momentum. Nano Lett., 14(8):4598–4601, 08 2014.

[98] Dmitri K. Gramotnev and Sergey I. Bozhevolnyi. Plasmonics beyond the diffraction limit. Nat. Photon., 4(2):83–91, 02 2010.

[99] Prabhat Verma. Tip-enhanced raman spectroscopy: Technique and recent advances. Chemical Reviews, 117(9):6447–6466, 2017. PMID: 28459149.

[100] Willie J. Padilla, Dimitri N. Basov, and David R. Smith. Negative refractive index metamaterials. Materials Today, 9(7):28 – 35, 2006.

[101] Takashi Arikawa, Shohei Morimoto, and Koichiro Tanaka. Focusing light with orbital angular momentum by circular array antenna. Opt. Express, 25(12):13728–13735, Jun 2017.

[102] Masahito Mochizuki. Creation of Skyrmions by Electric Field on Chiral-Lattice Magnetic Insulators. Advanced Electronic Materials, 2(1), 2016. 1500180.

[103] Wataru Koshibae and Naoto Nagaosa. Creation of skyrmions and antiskyrmions by local heating. Nat. Commun., 5(5148):5148, 10 2014.

[104] Agust´ın Salazar. On thermal diffusivity. European Journal of Physics, 24(4):351, 2003.

[105] Jos´e Luis Garc´ıa-Palacios and Francisco J. L´azaro. Langevin- dynamics study of the dynamical properties of small magnetic parti- cles. Phys. Rev. B, 58:14937–14958, Dec 1998.

[106] Masamichi Nishino and Seiji Miyashita. Realization of the ther- mal equilibrium in inhomogeneous magnetic systems by the Landau- Lifshitz-Gilbert equation with stochastic noise, and its dynamical aspects. Phys. Rev. B, 91:134411, Apr 2015.

[107] M. Mochizuki, X. Z. Yu, S. Seki, N. Kanazawa, W. Koshibae, J. Zang, M. Mostovoy, Y. Tokura, and N. Nagaosa. Thermally driven ratchet motion of a skyrmion microcrystal and topological magnon Hall ef- fect. Nat. Mater., 13(3):241–246, 03 2014.

[108] Xichao Zhang, Yan Zhou, and Motohiko Ezawa. Antiferromagnetic Skyrmion: Stability, Creation and Manipulation. Sci. Rep., 6, 04 2016.

[109] N.W. Ashcroft and N.D. Mermin. Solid State Physics. Saunders College, Philadelphia, 1976.

[110] C. Kittel. Introduction to Solid State Physics. Wiley, 2004.

[111] G. Li, Z. Xiang, F. Yu, T. Asaba, B. Lawson, P. Cai, C. Tins- man, A. Berkley, S. Wolgast, Y. S. Eo, Dae-Jeong Kim, C. Kurdak, J. W. Allen, K. Sun, X. H. Chen, Y. Y. Wang, Z. Fisk, and Lu Li. Two-dimensional Fermi surfaces in Kondo insulator SmB6. Science, 346(6214):1208–1212, 2014.

[112] B. S. Tan, Y.-T. Hsu, B. Zeng, M. Ciomaga Hatnean, N. Harri- son, Z. Zhu, M. Hartstein, M. Kiourlappou, A. Srivastava, M. D. Johannes, T. P. Murphy, J.-H. Park, L. Balicas, G. G. Lonzarich, G. Balakrishnan, and Suchitra E. Sebastian. Unconventional fermi surface in an insulating state. Science, 349(6245):287–290, 2015.

[113] Zengwei Zhu, Xiao Lin, Juan Liu, Benoˆıt Fauqu´e, Qian Tao, Chongli Yang, Youguo Shi, and Kamran Behnia. Quantum Oscillations, Thermoelectric Coefficients, and the Fermi Surface of Semimetallic WTe2. Phys. Rev. Lett., 114:176601, Apr 2015.

[114] Likai Li, Guo Jun Ye, Vy Tran, Ruixiang Fei, Guorui Chen, Huichao Wang, Jian Wang, Kenji Watanabe, Takashi Taniguchi, Li Yang, Xian Hui Chen, and Yuanbo Zhang. Quantum oscillations in a two- dimensional electron gas in black phosphorus thin films. Nat. Nan- otechnol., 10:608 EP –, 05 2015.

[115] Xiaolong Chen, Yingying Wu, Zefei Wu, Yu Han, Shuigang Xu, Lin Wang, Weiguang Ye, Tianyi Han, Yuheng He, Yuan Cai, and Ning Wang. High-quality sandwiched black phosphorus heterostructure and its quantum oscillations. Nat. Commun., 6:7315 EP –, 06 2015.

[116] P. L. Cai, J. Hu, L. P. He, J. Pan, X. C. Hong, Z. Zhang, J. Zhang, J. Wei, Z. Q. Mao, and S. Y. Li. Drastic Pressure Effect on the Extremely Large Magnetoresistance in WTe2: Quantum Oscillation Study. Phys. Rev. Lett., 115:057202, Jul 2015.

[117] M. Ben Shalom, M. J. Zhu, V. I. Fal’ko, A. Mishchenko, A. V. Kre- tinin, K. S. Novoselov, C. R. Woods, K. Watanabe, T. Taniguchi, A. K. Geim, and J. R. Prance. Quantum oscillations of the crit- ical current and high-field superconducting proximity in ballistic graphene. Nat. Phys., 12:318 EP –, 12 2015.

[118] Onur Erten, Pouyan Ghaemi, and Piers Coleman. Kondo Breakdown and Quantum Oscillations in SmB6. Phys. Rev. Lett., 116:046403, Jan 2016.

[119] Nicholas P. Breznay, Ian M. Hayes, B. J. Ramshaw, Ross D. Mc- Donald, Yoshiharu Krockenberger, Ai Ikeda, Hiroshi Irie, Hideki Ya- mamoto, and James G. Analytis. Shubnikov-de Haas quantum oscil- lations reveal a reconstructed Fermi surface near optimal doping in a thin film of the cuprate superconductor Pr1.86Ce0.14CuO4±δ. Phys. Rev. B, 94:104514, Sep 2016.

[120] Jinxiong Wu, Hongtao Yuan, Mengmeng Meng, Cheng Chen, Yan Sun, Zhuoyu Chen, Wenhui Dang, Congwei Tan, Yujing Liu, Jianbo Yin, Yubing Zhou, Shaoyun Huang, H. Q. Xu, Yi Cui, Harold Y. Hwang, Zhongfan Liu, Yulin Chen, Binghai Yan, and Hailin Peng. High electron mobility and quantum oscillations in non-encapsulated ultrathin semiconducting bi2o2se. Nat. Nanotechnol., 12:530 EP –, 04 2017.

[121] Wan Kyu Park, Lunan Sun, Alexander Noddings, Dae-Jeong Kim, Zachary Fisk, and Laura H. Greene. Topological surface states inter- acting with bulk excitations in the kondo insulator smb6 revealed via planar tunneling spectroscopy. Proc. Natl. Acad. Sci. USA, 113(24):6599–6604, 2016.

[122] Y. Xu, S. Cui, J. K. Dong, D. Zhao, T. Wu, X. H. Chen, Kai Sun, Hong Yao, and S. Y. Li. Bulk Fermi Surface of Charge-Neutral Exci- tations in SmB6 or Not: A Heat-Transport Study. Phys. Rev. Lett., 116:246403, Jun 2016.

[123] P. Coleman, E. Miranda, and A. Tsvelik. Are Kondo insulators gap- less? Physica B: Condensed Matter, 186-188:362–364, 1993.

[124] Debanjan Chowdhury, Inti Sodemann, and T. Senthil. Mixed-valence insulators with neutral fermi-surfaces. arXiv:1706.00418, 2017.

[125] Johannes Knolle and Nigel R. Cooper. Excitons in topological Kondo insulators: Theory of thermodynamic and transport anomalies in SmB6. Phys. Rev. Lett., 118:096604, Mar 2017.

[126] Onur Erten, Po-Yao Chang, Piers Coleman, and Alexei M. Tsve- lik. Skyrme Insulators: Insulators at the Brink of Superconductivity. Phys. Rev. Lett., 119:057603, Aug 2017.

[127] Zhaoming Tian, Yoshimitsu Kohama, Takahiro Tomita, Hiroaki Ishizuka, Timothy H. Hsieh, Jun J. Ishikawa, Koichi Kindo, Leon Ba- lents, and Satoru Nakatsuji. Field-induced quantum metal–insulator transition in the pyrochlore iridate nd2ir2o7. Nat. Phys., 12:134 EP –, 11 2015.

[128] Kentaro Ueda, Taekoo Oh, Bohm-Jung Yang, Ryoma Kaneko, Jun Fujioka, Naoto Nagaosa, and Yoshinori Tokura. Magnetic-field in- duced multiple topological phases in pyrochlore iridates with mott criticality. Nat. Commun., 8:15515 EP –, 05 2017.

[129] R. Meservey and P. M. Tedrow. Surface Relaxation Times of Conduction-Electron Spins in Superconductors and Normal Metals. Phys. Rev. Lett., 41:805–808, Sep 1978.

[130] K. Lenz, H. Wende, W. Kuch, K. Baberschke, K. Nagy, and A. J´anossy. Two-magnon scattering and viscous gilbert damping in ultrathin ferromagnets. Phys. Rev. B, 73:144424, Apr 2006.

[131] Gang Chen and Michael Hermele. Magnetic orders and topologi- cal phases from f -d exchange in pyrochlore iridates. Phys. Rev. B, 86:235129, Dec 2012.

[132] Clarence Zener. Interaction between the d-shells in the transition metals. ii. ferromagnetic compounds of manganese with perovskite structure. Phys. Rev., 82:403–405, May 1951.

[133] P. W. Anderson and H. Hasegawa. Considerations on double ex- change. Phys. Rev., 100:675–681, Oct 1955.

[134] Keita Kishigi and Yasumasa Hasegawa. de haas–van alphen effect in two-dimensional and quasi-two-dimensional systems. Phys. Rev. B, 65:205405, May 2002.

[135] A. Jayaraman. Diamond anvil cell and high-pressure physical inves- tigations. Rev. Mod. Phys., 55:65–108, Jan 1983.

[136] Nicholas R. Brewer, Zachary N. Buckholtz, Zachary J. Simmons, Eli A. Mueller, and Deniz D. Yavuz. Coherent magnetic response at optical frequencies using atomic transitions. Phys. Rev. X, 7:011005, Jan 2017.

[137] The Editors of Encyclopædia Britannica, editor. Semiconductor. En- cyclopædia Britannica, inc., 2018.

[138] Adrien Bolens, Hosho Katsura, Masao Ogata, and Seiji Miyashita. Synergetic effect of spin-orbit coupling and Zeeman splitting on the optical conductivity in the one-dimensional Hubbard model. Phys. Rev. B, 95:235115, Jun 2017.

[139] Youtarou Takahashi, Ryo Shimano, Yoshio Kaneko, Hiroshi Mu- rakawa, and Yoshinori Tokura. Magnetoelectric resonance with elec- tromagnons in a perovskite helimagnet. Nature Phys., 8(2):121–125, 02 2012.

[140] Jeschke Gunnar. Determination of the Nanostructure of Polymer Ma- terials by Electron Paramagnetic Resonance Spectroscopy. Macro- molecular Rapid Communications, 23(4):227–246, 2002.

[141] J.A. Weil and J.R. Bolton. Electron Paramagnetic Resonance: Ele- mentary Theory and Practical Applications. Wiley, 2007.

[142] B. Halliwell and J. M. C. Gutteridge. Free Radicals in Biology and Medicine. Oxford University Press, 2015.

[143] O. Grinberg and L.J. Berliner. Very High Frequency (VHF) ESR/EPR. Biological Magnetic Resonance. Springer US, 2013.

[144] K´alm´an L. Nagy, Dario Quintavalle, Titusz Feh´er, and Andr´as J´anossy. Multipurpose High-Frequency ESR Spectrometer for Con- densed Matter Research. Applied Magnetic Resonance, 40(1):47–63, 2011.

[145] Daniel M. Chipman. Excited electronic states of small water clusters. The Journal of Chemical Physics, 122(044111), 2005.

[146] Anne Laure Barra, Dante Gatteschi, and Roberta Sessoli. High- frequency EPR spectra of a molecular nanomagnet: Understanding quantum tunneling of the magnetization. Phys. Rev. B, 56:8192– 8198, Oct 1997.

[147] R. S. Edwards, S. Maccagnano, E. C. Yang, S. Hill, W. Wernsdorfer, D. Hendrickson, and G. Christou. High-frequency electron param- agnetic resonance investigations of tetranuclear nickel-based single- molecule magnets. Journal of Applied Physics, 93(10):7807–7809, 2018/08/31 2003.

[148] En-Che Yang, Cem Kirman, Jon Lawrence, Lev N. Zakharov, Arnold L. Rheingold, Stephen Hill, and David N. Hendrickson. Single-Molecule Magnets: High-Field Electron Paramagnetic Res- onance Evaluation of the Single-Ion Zero-Field Interaction in a ZnII3NiII Complex. Inorganic Chemistry, 44(11):3827–3836, 05 2005.

[149] Katie E. R. Marriott, Lakshmi Bhaskaran, Claire Wilson, Marisa Medarde, Stefan T. Ochsenbein, Stephen Hill, and Mark Murrie. Pushing the limits of magnetic anisotropy in trigonal bipyramidal ni(ii). Chem. Sci., 6:6823–6828, 2015.

[150] Xiao-Liang Qi and Shou-Cheng Zhang. Topological insulators and superconductors. Rev. Mod. Phys., 83:1057–1110, Oct 2011.

[151] M. Z. Hasan and C. L. Kane. Colloquium: Topological insulators. Rev. Mod. Phys., 82:3045–3067, Nov 2010.

[152] Andreas Roth, Christoph Bru¨ne, Hartmut Buhmann, Laurens W. Molenkamp, Joseph Maciejko, Xiao-Liang Qi, and Shou-Cheng Zhang. Nonlocal transport in the quantum spin hall state. Science, 325(5938):294–297, 2009.

[153] Wen-Jie Chen, Shao-Ji Jiang, Xiao-Dong Chen, Baocheng Zhu, Lei Zhou, Jian-Wen Dong, and C. T. Chan. Experimental realization of photonic topological insulator in a uniaxial metacrystal waveguide. Nature Communications, 5:5782 EP –, 12 2014.

[154] Roman Su¨sstrunk and Sebastian D. Huber. Observation of phononic helical edge states in a mechanical topological insulator. Science, 349(6243):47, 07 2015.

[155] H. Ito, K. Furuya, Y. Shibata, S. Kashiwaya, M. Yamaguchi, T. Akazaki, H. Tamura, Y. Ootuka, and S. Nomura. Near-Field Optical Mapping of Quantum Hall Edge States. Phys. Rev. Lett., 107:256803, Dec 2011.

[156] Keji Lai, Worasom Kundhikanjana, Michael A. Kelly, Zhi-Xun Shen, Javad Shabani, and Mansour Shayegan. Imaging of Coulomb-Driven Quantum Hall Edge States. Phys. Rev. Lett., 107:176809, Oct 2011.

[157] Katja C. Nowack, Eric M. Spanton, Matthias Baenninger, Markus K¨onig, John R. Kirtley, Beena Kalisky, C. Ames, Philipp Leub- ner, Christoph Bru¨ne, Hartmut Buhmann, Laurens W. Molenkamp, David Goldhaber-Gordon, and Kathryn A. Moler. Imaging currents in HgTe quantum wells in the quantum spin Hall regime. Nature Materials, 12:787 EP –, 06 2013.

[158] Raffaele Resta. Electrical polarization and orbital magnetization: the modern theories. Journal of Physics: Condensed Matter, 22(12):123201, 2010.

[159] T. Thonhauser. Theory of orbital magnetization in solids. Interna- tional Journal of Modern Physics B, 25(11):1429–1458, 2011.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る