リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Fault Slip Behaviors in Plate Subduction Zones inferred from the Nano-scale Pore Structure of Fault Rocks」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Fault Slip Behaviors in Plate Subduction Zones inferred from the Nano-scale Pore Structure of Fault Rocks

中元, 啓輔 北海道大学

2023.09.25

概要

Pores in rocks consist of intergranular voids between the constituent minerals,
fractures, or their complexes (McCreesh et al., 2010; Passey et al., 2010). The structure
of these pores (size, shape, connectivity, surface complexity, etc.) is one of the factors
that influence fluid and gas transport processes. ...

この論文で使われている画像

関連論文

参考文献

Avnir, D., & Jaroniec, M. (1989). An isotherm equation for adsorption on fractal

surfaces of heterogeneous porous materials. Langmuir, 5(6), 1431–1433.

Barrett, E. P., Joyner, L. G., & Halenda, P. P. (1951). The Determination of Pore

Volume and Area Distributions in Porous Substances. I. Computations from

Nitrogen Isotherms. Journal of the American Chemical Society, 73(1), 373–380.

Bolt, G. H. (1955). Analysis of the validity of the Gouy-Chapman theory of the electric

double layer. Journal of Colloid Science, 10(2), 206–218.

Brown, K. M., & Ransom, B. (1996). Porosity corrections for smectite-rich sediments:

Impact on studies of compaction, fluid generation, and tectonic history. Geology,

24(9), 843–846.

Brunauer, S., Emmett, P. H., & Teller, E. (1938). Adsorption of Gases in

Multimolecular Layers. Journal of the American Chemical Society, 60(2), 309–

319.

Chatterji, P. K., Morgenstern, N., & others. (1990). A modified shear strength

formulation for swelling clay soils. ASTM International.

Chen, L., Jiang, Z., Liu, K., Tan, J., Gao, F., & Wang, P. (2017). Pore structure

characterization for organic-rich Lower Silurian shale in the Upper Yangtze

Platform, South China: A possible mechanism for pore development. Journal of

Natural Gas Science and Engineering, 46, 1–15.

Chester, F. M., Mori, J. J., Toczko, S., Eguchi, N., & Expedition 343/343T Scientists.

(2012). Integrated Ocean Drilling Program Expedition 343/343T Preliminary

Report. Integrated Ocean Drilling Program.

Chester, F. M., Rowe, C., Ujiie, K., Kirkpatrick, J., Regalla, C., Remitti, F., Moore, J.

C., Toy, V., Wolfson-Schwehr, M., Bose, S., Kameda, J., Mori, J. J., Brodsky, E.

E., Eguchi, N., Toczko, S., & Expedition 343 and 343T Scientists. (2013).

Structure and Composition of the Plate-Boundary Slip Zone for the 2011 TohokuOki Earthquake. Science, 342(6163), 1208–1211.

Conin, M., Henry, P., Bourlange, S., Raimbourg, H., & Reuschlé, T. (2011).

Interpretation of porosity and LWD resistivity from the Nankai accretionary wedge

in light of clay physicochemical properties: Evidence for erosion and local

overpressuring. Geochemistry, Geophysics, Geosystems, 12(3).

Daigle, H. (2014). Microporosity development in shallow marine sediments from the

Nankai Trough. Marine Geology, 357, 293–303.

Derjaguin, B., & Landau, L. (1941). Theory of the stability of strongly charged

73

lyophobic sols and of the adhesion of strongly charged particles in solutions of

electrolytes. Progress in Surface Science, 43(1–4), 30–59.

Desbois, G., Urai, J., & Kukla, P. (2009). Morphology of the pore space in claystones—

Evidence from BIB/FIB ion beam sectioning and cryo-SEM observations. EEarth,

4.

Durán, J. D. G., Ramos-Tejada, M. M., Arroyo, F. J., & González-Caballero, F. (2000).

Rheological and Electrokinetic Properties of Sodium Montmorillonite

Suspensions: I. Rheological Properties and Interparticle Energy of Interaction.

Journal of Colloid and Interface Science, 229(1), 107–117.

Dutilleul, J., Bourlange, S., Conin, M., & Géraud, Y. (2020). Quantification of bound

water content, interstitial porosity and fracture porosity in the sediments entering

the North Sumatra subduction zone from Cation Exchange Capacity and IODP

Expedition 362 resistivity data. Marine and Petroleum Geology, 111, 156–165.

Dutilleul, J., Bourlange, S., Géraud, Y., & Stemmelen, D. (2020). Porosity, Pore

Structure, and Fluid Distribution in the Sediments Entering the Northern Hikurangi

Margin, New Zealand. Journal of Geophysical Research: Solid Earth, 125(11).

Eberl, D. D. (2003). User Guide to RockJock—A Program for Determining Quantitative

Mineralogy from X-Ray Diffraction Data. In User Guide to RockJock—A Program

for Determining Quantitative Mineralogy from X-Ray Diffraction Data (USGS

Numbered Series No. 2003–78; Open-File Report, Vols. 2003–78). U.S.

Geological Survey.

Evans, J. P., & Chester, F. M. (1995). Fluid-rock interaction in faults of the San

Andreas system: Inferences from San Gabriel fault rock geochemistry and

microstructures. Journal of Geophysical Research: Solid Earth, 100(B7), 13007–

13020.

Fitts, T. G., & Brown, K. M. (1999). Stress-induced smectite dehydration:

Ramifications for patterns of freshening and fluid expulsion in the N. Barbados

accretionary wedge. Earth and Planetary Science Letters, 172(1–2), 179–197.

Fujii, Y., Satake, K., Sakai, S., Shinohara, M., & Kanazawa, T. (2011). Tsunami source

of the 2011 off the Pacific coast of Tohoku Earthquake. Earth, Planets and Space,

63(7), 815–820.

Fukuchi, R., Fujimoto, K., Kameda, J., Hamahashi, M., Yamaguchi, A., Kimura, G.,

Hamada, Y., Hashimoto, Y., Kitamura, Y., & Saito, S. (2014). Changes in illite

crystallinity within an ancient tectonic boundary thrust caused by thermal,

mechanical, and hydrothermal effects: An example from the Nobeoka Thrust,

southwest Japan. Earth, Planets and Space, 66(1), 116.

74

Giese, R. F. (1974). Surface energy calculations for muscovite. Nature, 248(5449),

Article 5449.

Giese, R. F. (1978). The Electrostatic Interlayer Forces of Layer Structure Minerals.

Clays and Clay Minerals, 26(1), 51–57.

Hamada, Y., Hirono, T., & Ishikawa, T. (2011). Coseismic frictional heating and fluidrock interaction in a slip zone within a shallow accretionary prism and implications

for earthquake slip behavior. Journal of Geophysical Research: Solid Earth,

116(B1).

Hamahashi, M., Hamada, Y., Yamaguchi, A., Kimura, G., Fukuchi, R., Saito, S.,

Kameda, J., Kitamura, Y., Fujimoto, K., & Hashimoto, Y. (2015). Multiple

damage zone structure of an exhumed seismogenic megasplay fault in a subduction

zone—A study from the Nobeoka Thrust Drilling Project. Earth, Planets and

Space, 67(1), 30.

Hamahashi, M., Saito, S., Kimura, G., Yamaguchi, A., Fukuchi, R., Kameda, J.,

Hamada, Y., Kitamura, Y., Fujimoto, K., Hashimoto, Y., Hina, S., & Eida, M.

(2013). Contrasts in physical properties between the hanging wall and footwall of

an exhumed seismogenic megasplay fault in a subduction zone-An example from

the Nobeoka Thrust Drilling Project: PHYSICAL PROPERTY OF EXHUMED

SPLAY FAULT. Geochemistry, Geophysics, Geosystems, 14(12), 5354–5370.

Hanamura, Y., & Ogawa, Y. (1993). Layer-parallel faults, duplexes, imbricate thrusts

and vein structures of the Miura Group: Keys to understanding the Izu fore-arc

sediment accretion to the Honshu fore arc. The Island Arc, 2(3), 126–141.

Hasegawa, R., Yamaguchi, A., Fukuchi, R., Hamada, Y., Ogawa, N., Kitamura, Y.,

Kimura, G., Ashi, J., & Ishikawa, T. (2019). Postseismic fluid discharge

chemically recorded in altered pseudotachylyte discovered from an ancient

megasplay fault: An example from the Nobeoka Thrust in the Shimanto

accretionary complex, SW Japan. Progress in Earth and Planetary Science, 6(1),

Hedin, A. (2004). Integrated near-field evolution model for a KBS-3 repository.

Hogg, R., Cahn, D. S., Healy, T. W., & Fuerstenau, D. W. (1966). Diffusional mixing in

an ideal system. Chemical Engineering Science, 21(11), 1025–1038.

Hüpers, A., Torres, M. E., Owari, S., McNeill, L. C., Dugan, B., Henstock, T. J.,

Milliken, K. L., Petronotis, K. E., Backman, J., Bourlange, S., Chemale, F., Chen,

W., Colson, T. A., Frederik, M. C. G., Guèrin, G., Hamahashi, M., House, B. M.,

Jeppson, T. N., Kachovich, S., … Zhao, X. (2017). Release of mineral-bound

water prior to subduction tied to shallow seismogenic slip off Sumatra. Science,

356(6340), 841–844.

75

Ide, S., Baltay, A., & Beroza, G. C. (2011). Shallow Dynamic Overshoot and Energetic

Deep Rupture in the 2011 Mw 9.0 Tohoku-Oki Earthquake. Science, 332(6036),

1426–1429.

Ikari, M. J., Saffer, D. M., & Marone, C. (2007). Effect of hydration state on the

frictional properties of montmorillonite-based fault gouge. Journal of Geophysical

Research: Solid Earth, 112(B6).

Ikehara-Ohmori, K., (2001). The thermal structure of the Shimanto Belt and

accretionary denudation. Chikyu monthly/special, (32), 174-180.

Inoue, A. (1989). Convenient Technique for Estimating Smectite Layer Percentage in

Randomly Interstratified Illite/Smectite Minerals. Clays and Clay Minerals, 37(3),

227–234.

Israelachvili, J. N. (2011). Intermolecular and surface forces. Academic press.

Ito M., Okamoto M., Suzuki K., Shibata M., & Sasaki Y. (1994). Mineral Composition

Analysis of Bentonite. Journal of the Atomic Energy Society of Japan / Atomic

Energy Society of Japan, 36(11), 1055–1058.

Kameda, J., & Hamada, Y. (2020). Cohesional Slip on a Plate Subduction Boundary

During a Large Earthquake. Geophysical Research Letters, 47(18),

e2020GL088395.

Kameda, J., & Hamada, Y. (2022). Stick-slip behavior of a clayey crustal fault. Physical

Review Research, 4(1), 013211.

Kameda, J., Inaoi, C., & Conin, M. (2016). Exchangeable cation composition of the

smectite-rich plate boundary fault at the Japan Trench. Geophysical Research

Letters, 43(7), 3112–3119.

Kameda, J., & Morisaki, T. (2017). Sensitivity of Clay Suspension Rheological

Properties to pH, Temperature, Salinity, and Smectite‐Quartz Ratio. Geophysical

Research Letters, 44(19), 9615–9621.

Kameda, J., & Okamoto, A. (2021). 1-D inversion analysis of a shallow landslide

triggered by the 2018 Eastern Iburi earthquake in Hokkaido, Japan. Earth, Planets

and Space, 73(1), 116.

Kameda, J., Raimbourg, H., Kogure, T., & Kimura, G. (2011). Low-grade

metamorphism around the down-dip limit of seismogenic subduction zones:

Example from an ancient accretionary complex in the Shimanto Belt, Japan.

Tectonophysics, 502(3), 383–392.

Kameda, J., Saruwatari, K., & Tanaka, H. (2003). H 2 generation in wet grinding of

granite and single‐crystal powders and implications for H 2 concentration on active

faults. Geophysical Research Letters, 30(20), 2003GL018252.

76

Kameda, J., Shimizu, M., Ujiie, K., Hirose, T., Ikari, M., Mori, J., Oohashi, K., &

Kimura, G. (2015). Pelagic smectite as an important factor in tsunamigenic slip

along the Japan Trench. Geology, 43(2), 155–158.

Kameda, J., Uno, M., Conin, M., Ujiie, K., Hamada, Y., & Kimura, G. (2019). Fault

weakening caused by smectite swelling. Earth, Planets and Space, 71(1), 131.

Kameda, J., Yamamoto, Y., Hamada, Y., Fujimoto, K., & Kimura, G. (2013). Progress

of illitization along an imbricate frontal thrust at shallow depths in an accretionary

prism. Tectonophysics, 600, 41–51.

Karnland, O., Olsson, S., & Nilsson, U. (2006). Mineralogy and sealing properties of

various bentonites and smectite-rich clay materials. Swedish Nuclear Fuel and

Waste Management Co.

Kaufhold, S., Färber, G., Dohrmann, R., Ufer, K., & Grathoff, G. (2015). Zn-rich

smectite from the Silver Coin Mine, Nevada, USA. Clay Minerals, 50(4), 417–430.

Kawakami, S. (2001). Upper Miocene radiolarians from the Nishizaki Formation and

Ishido Group in the southern part of Boso Peninsula, Japan, and their geological

significance. News of Osaka Micropaleontologists (NOM), 12, 343–358.

Keren, R., & Shainberg, I. (1975). Water Vapor Isotherms and Heat of Immersion of

Na/Ca-Montmorillonite Systems—I: Homoionic Clay. Clays and Clay Minerals,

23(3), 193–200.

Kodaira, S., No, T., Nakamura, Y., Fujiwara, T., Kaiho, Y., Miura, S., Takahashi, N.,

Kaneda, Y., & Taira, A. (2012). Coseismic fault rupture at the trench axis during

the 2011 Tohoku-oki earthquake. Nature Geoscience, 5(9), 646–650.

Komine, H., & Ogata, N. (2004). Predicting Swelling Characteristics of Bentonites.

Journal of Geotechnical and Geoenvironmental Engineering, 130(8), 818–829.

Komine, H., Yasuhara, K., & Murakami, S. (2009). Swelling characteristics of

bentonites in artificial seawater. Canadian Geotechnical Journal, 46(2), 177–189.

Kondo, H., Kimura, G., Masago, H., Ohmori-Ikehara, K., Kitamura, Y., Ikesawa, E.,

Sakaguchi, A., Yamaguchi, A., & Okamoto, S. (2005). Deformation and fluid flow

of a major out-of-sequence thrust located at seismogenic depth in an accretionary

complex: Nobeoka Thrust in the Shimanto Belt, Kyushu, Japan: NOBEOKA

THRUST, A SEISMOGENIC OST. Tectonics, 24(6),.

Kong, L., Hadavimoghaddam, F., Li, C., Liu, K., Liu, B., Semnani, A., & Ostadhassan,

M. (2021). AFM vs. Nanoindentation: Nanomechanical properties of organic-rich

Shale. Marine and Petroleum Geology, 132, 105229.

Kuila, U., & Prasad, M. (2013). Specific surface area and pore-size distribution in clays

and shales: Specific surface area and pore-size distribution in clays and shales.

77

Geophysical Prospecting, 61(2), 341–362.

Lee, I., & Ogawa, Y. (1998). Bottom-current deposits in the Miocene–Pliocene Misaki

Formation, Izu forearc area, Japan. Island Arc, 7(3), 315–329.

Li, H., Xu, Z., Niu, Y., Kong, G., Huang, Y., Wang, H., Si, J., Sun, Z., Pei, J., Gong, Z.,

Chevalier, M.-L., & Liu, D. (2014). Structural and physical property

characterization in the Wenchuan earthquake Fault Scientific Drilling project—

Hole 1 (WFSD-1). Tectonophysics, 619–620, 86–100.

Li, T., Jiang, Z., Xu, C., Liu, B., Liu, G., Wang, P., Li, X., Chen, W., Ning, C., &

Wang, Z. (2017). Effect of pore structure on shale oil accumulation in the lower

third member of the Shahejie formation, Zhanhua Sag, eastern China: Evidence

from gas adsorption and nuclear magnetic resonance. Marine and Petroleum

Geology, 88, 932–949.

Li, Y., Wang, Z., Pan, Z., Niu, X., Yu, Y., & Meng, S. (2019). Pore structure and its

fractal dimensions of transitional shale: A cross-section from east margin of the

Ordos Basin, China. Fuel, 241, 417–431.

Liu, X., Xiong, J., & Liang, L. (2015). Investigation of pore structure and fractal

characteristics of organic-rich Yanchang formation shale in central China by

nitrogen adsorption/desorption analysis. Journal of Natural Gas Science and

Engineering, 22, 62–72.

Logan, J. M., & Rauenzahn, K. A. (1987). Frictional dependence of gouge mixtures of

quartz and montmorillonite on velocity, composition and fabric. Tectonophysics,

144(1–3), 87–108.

Loucks, R. G., Reed, R. M., Ruppel, S. C., & Hammes, U. (2012). Spectrum of pore

types and networks in mudrocks and a descriptive classification for matrix-related

mudrock pores. AAPG Bulletin, 96(6), 1071–1098.

Loucks, R. G., Reed, R. M., Ruppel, S. C., & Jarvie, D. M. (2009). Morphology,

Genesis, and Distribution of Nanometer-Scale Pores in Siliceous Mudstones of the

Mississippian Barnett Shale. Journal of Sedimentary Research, 79(12), 848–861.

Marone, C., & Scholz, C. H. (1989). Particle-size distribution and microstructures

within simulated fault gouge. Journal of Structural Geology, 11(7), 799–814.

Masumoto, H., Kameda, J., Arima, H., Sugiyama, K., Nagai, T., & Yamamoto, Y.

(2018). Dehydroxylation Kinetics of Clay Minerals and Its Application to Friction

Heating Along an Imbricate Thrust in an Accretionary Prism. Geochemistry,

Geophysics, Geosystems, 19(9), 2991–3003.

McCreesh, C., & Robert E. (1991). Petrography and Reservoir Physics II: Relating Thin

Section Porosity to Capillary Pressure, the Association Between Pore Types and

78

Throat Size (1). AAPG Bulletin, 75.

McNeill, L. C., Dugan, B., & Petronotis, K. E. (2017). Sumatra Subduction Zone.

Proceedings of the International Ocean Discovery Program, 362.

Mitchell, J. K., & Soga, K. (2005). Fundamentals of Soil Behavior. 560.

Miyawaki R., Sano T., Oohashi F., Suzuki M., Kogure T., Okumura T., Kameda J.,

Umezome T., Sato T., Chino D., Hiroyama K., Yamada H., Tamura K., Morimoto

K., Uehara S., & Hatta T. (2010). Some Reference Data for the JCSS CIay

Specimens (No. 4). The Clay Science Society of Japan.

Montoro, M. A., & Francisca, F. M. (2019). Effect of ion type and concentration on

rheological properties of natural sodium bentonite dispersions at low shear rates.

Applied Clay Science, 178, 105132.

Monzawa, N., & Otsuki, K. (2003). Comminution and fluidization of granular fault

materials: Implications for fault slip behavior. Tectonophysics, 367(1), 127–143.

Moore, D. E., & Lockner, D. A. (2007). 11. Friction of the Smectite Clay

Montmorillonite: A Review and Interpretation of Data. In T. H. Dixon & C. Moore

(Eds.), The Seismogenic Zone of Subduction Thrust Faults (pp. 317–345).

Columbia University Press.

Moore, J. C., & Saffer, D. (2001). Updip limit of the seismogenic zone beneath the

accretionary prism of southwest Japan: An effect of diagenetic to low-grade

metamorphic processes and increasing effective stress. Geology, 29(2), 183–186.

Mori, K., & Taguchi, K., (1988). Examination of the low-grade metamorphism in the

Shimanto Belt by vitrinite reflectance. Modern geology 12, 325– 339.

Mukoyoshi, H., Sakaguchi, A., Otsuki, K., Hirono, T., & Soh, W. (2006). Co-seismic

frictional melting along an out-of-sequence thrust in the Shimanto accretionary

complex. Implications on the tsunamigenic potential of splay faults in modern

subduction zones. Earth and Planetary Science Letters, 245(1–2), 330–343.

Murata, A. (1998). Duplexes and low‐angle nappe structures of the Shimanto terrane,

southwest Japan. Memoir of Geological Society of Japan, 50, 147.

Nakamoto, K., Kamei, M., & Kameda, J. (2023). Surface Physicochemical Properties of

Smectite‐Rich Fault Gouge: A Case Study of the Japan Trench Plate‐Boundary

Fault. Geophysical Research Letters, 50(11), e2023GL104271.

Oohashi, K., Hirose, T., Takahashi, M., & Tanikawa, W. (2015). Dynamic weakening

of smectite-bearing faults at intermediate velocities: Implications for subduction

zone earthquakes. Journal of Geophysical Research: Solid Earth, 120(3), 1572–

1586.

Oohashi, K., Lin, W., Wu, H.-Y., Yamaguchi, A., & Yamamoto, Y. (2017). Stress State

79

in the Kumano Basin and in Slope Sediment Determined From Anelastic Strain

Recovery: Results From IODP Expedition 338 to the Nankai Trough.

Geochemistry, Geophysics, Geosystems, 18(10), 3608–3616.

Otsuki, A. (2018). Coupling colloidal forces with yield stress of charged inorganic

particle suspension: A review. ELECTROPHORESIS, 39(5–6), 690–701.

Passey, Q. R., Bohacs, K. M., Esch, W. L., Klimentidis, R. ., & Sinha, S. . (2010). From

Oil-Prone Source Rock to Gas-Producing Shale Reservoir – Geologic and

Petrophysical Characterization of Unconventional Shale-Gas Reservoirs. All Days,

SPE-131350-MS.

Plaza, I., Ontiveros-Ortega, A., Calero, J., & Romero, C. (2018). A new approach to

triggering mechanism of volcano landslides based on zeta potential and surface

free energy balance. Geomorphology, 301, 1–9.

Qin, L., Wang, P., Li, S., Lin, H., Wang, R., Wang, P., & Ma, C. (2021). Gas adsorption

capacity changes in coals of different ranks after liquid nitrogen freezing. Fuel,

292, 120404.

Raimbourg, H., Tadahiro, S., Asuka, Y., Haruka, Y., & Kimura, G. (2009). Horizontal

shortening versus vertical loading in accretionary prisms. Geochemistry,

Geophysics, Geosystems, 10(4).

Ren, Y., Yang, S., Andersen, K. H., Yang, Q., & Wang, Y. (2021). Thixotropy of soft

clay: A review. Engineering Geology, 287, 106097.

Reynolds Jr, R. (1985). NEWMOD©. A Computer Program for the Calculation of OneDimensional Diffraction Patterns of Mixed-Layered Clay.

Reynolds, R. C. (1992). X-ray Diffraction Studies of Illite/Smectite from Rocks, < 1 µm

Randomly Oriented Powders, and < 1 µm Oriented Powder Aggregates: The

Absence of Laboratory-Induced Artifacts. Clays and Clay Minerals, 40(4), 387–

396.

Rubio-Hernandez, F., Carrique, F., & Ruiz-Reina, E. (2004). The primary

electroviscous effect in colloidal suspensions. Advances in Colloid and Interface

Science, 107(1), 51–60.

Saffer, D. M., Frye, K. M., Marone, C., & Mair, K. (2001). Laboratory results

indicating complex and potentially unstable frictional behavior of smectite clay.

Geophysical Research Letters, 28(12), 2297–2300.

Saffer, D. M., Frye, K. M., Marone, C., & Mair, K. (2001). Laboratory results

indicating complex and potentially unstable frictional behavior of smectite

clay. Geophysical Research Letters, 28(12), 2297-2300.

Sakaguchi, A., Chester, F., Curewitz, D., Fabbri, O., Goldsby, D., Kimura, G., Li, C.-F.,

80

Masaki, Y., Screaton, E. J., Tsutsumi, A., Ujiie, K., & Yamaguchi, A. (2011).

Seismic slip propagation to the updip end of plate boundary subduction interface

faults: Vitrinite reflectance geothermometry on Integrated Ocean Drilling Program

NanTro SEIZE cores. Geology, 39(4), 395–398.

Sakuma, H., & Suehara, S. (2015). Interlayer bonding energy of layered minerals:

Implication for the relationship with friction coefficient. Journal of Geophysical

Research: Solid Earth, 120(4), 2212–2219.

Saruwatari, K., Kameda, J., & Tanaka, H. (2004). Generation of hydrogen ions and

hydrogen gas in quartz–water crushing experiments: An example of chemical

processes in active faults. Physics and Chemistry of Minerals, 31(3), 176–182.

Satake, K. (1993). Depth distribution of coseismic slip along the Nankai Trough, Japan,

from joint inversion of geodetic and tsunami data. Journal of Geophysical

Research: Solid Earth, 98(B3), 4553–4565.

Sawai, M., Shimamoto, T., & Togo, T. (2012). Reduction in BET surface area of

Nojima fault gouge with seismic slip and its implication for the fracture energy of

earthquakes. Journal of Structural Geology, 38, 117–138.

Schieber, J. (2010). Common Themes in the Formation and Preservation of Intrinsic

Porosity in Shales and Mudstones – Illustrated With Examples Across the

Phanerozoic. SPE Unconventional Gas Conference.

Schleicher, A. M., Boles, A., & van der Pluijm, B. A. (2015). Response of natural

smectite to seismogenic heating and potential implications for the 2011 Tohoku

earthquake in the Japan Trench. Geology, 43(9), 755–758.

Schleicher, A. M., Warr, L. N., & Van Der Pluijm, B. A. (2009). On the origin of

mixed-layered clay minerals from the San Andreas Fault at 2.5–3 km vertical depth

(SAFOD drillhole at Parkfield, California). Contributions to Mineralogy and

Petrology, 157(2), 173–187.

Scholz, C. H. (2002). Earthquakes and faulting. Cambridge University Press

Cambridge.

Sibson, R. (1977). Fault rocks and fault mechanics. Journal of the Geological Society,

133, 191–213.

Sibson, R. H. (1973). Interactions between Temperature and Pore-Fluid Pressure during

Earthquake Faulting and a Mechanism for Partial or Total Stress Relief. Nature

Physical Science, 243(126), Article 126.

Sing, K. S. (1985). Reporting physisorption data for gas/solid systems with special

reference to the determination of surface area and porosity (Recommendations

1984). Pure and applied chemistry, 57(4), 603-619

81

Slatt, R. M., & O’Brien, N. R. (2011). Pore types in the Barnett and Woodford gas

shales: Contribution to understanding gas storage and migration pathways in finegrained rocks. AAPG Bulletin, 95(12), 2017–2030.

Smolchowski M. (1921). Elektrische endosmose und stromungsstrome. Handbuch Del

Elektrizitat Und Des Magnetismus, 2, 366.

Soh, W., Nakayama, K., & Kimura, T. (1998). Arc–arc collision in the Izu collision

zone, central Japan, deduced from the Ashigara Basin and adjacent Tanzawa

Mountains. Island Arc, 7(3), 330–341.

Soh, W., Pickering, K. T., Taira, A., & Tokuyama, H. (1991). Basin evolution in the

arc-arc Izu Collision Zone, Mio-Pliocene Miura Group, central Japan. Journal of

the Geological Society, 148(2), 317–330.

Tachi, Y., & Yotsuji, K. (2014). Diffusion and sorption of Cs+, Na+, I− and HTO in

compacted sodium montmorillonite as a function of porewater salinity: Integrated

sorption and diffusion model. Geochimica et Cosmochimica Acta, 132, 75–93.

Taira, A. (1988). The Shimanto belt in Shikoku, Japan-evolution of Cretaceous to

Miocene accretionary prism. The Shimanto Belt, Southwest Japan-Studies on the

Evolution of an Accretionary Prism.

Tanikawa, W., & Tadai, O. (2018). Data Report for quantitative analysis of mineral

composition using powdered X-ray diffraction method and RockJock program.

JAMSTEC Rep. Res. Dev., 27, 57–67.

Terzaghi, K. (1925). Principles of soil mechanics. IV. Settlement and consolidation of

clay. Engineering News-Record, 95, 874.

Tripathy, S., Sridharan, A., & Schanz, T. (2004). Swelling pressures of compacted

bentonites from diffuse double layer theory. Canadian Geotechnical Journal,

41(3), 437–450.

Trütner, S., Hüpers, A., Ikari, M. J., Yamaguchi, A., & Kopf, A. J. (2015). Lithification

facilitates frictional instability in argillaceous subduction zone sediments.

Tectonophysics, 665, 177–185.

Van Olphen, H. (1977). An introduction to clay colloid chemistry: For clay

technologists, geologists, and soil scientists. Wiley.

Van Oss, C. J., Giese, R. F., Li, Z., Murphy, K., Norris, J., Chaudhury, M. K., & Good,

R. J. (1992). Determination of contact angles and pore sizes of porous media by

column and thin layer wicking. Journal of Adhesion Science and Technology, 6(4),

413–428.

Vannucchi, P., Spagnuolo, E., Aretusini, S., Di Toro, G., Ujiie, K., Tsutsumi, A., &

Nielsen, S. (2017). Past seismic slip-to-the-trench recorded in Central America

82

megathrust. Nature Geoscience, 10(12), 935–940.

Verwey, E. J. W. (1947). Theory of the Stability of Lyophobic Colloids. The Journal of

Physical and Colloid Chemistry, 51(3), 631–636.

Vrolijk, P., & Van Der Pluijm, B. A. (1999). Clay gouge. Journal of Structural

Geology, 21(8–9), 1039–1048.

Wang, J., Liu, H., Wang, L., Zhang, H., Luo, H., & Gao, Y. (2015). Apparent

permeability for gas transport in nanopores of organic shale reservoirs including

multiple effects. International Journal of Coal Geology, 152, 50–62.

Warr, L. N., & Cox, S. (2001). Clay mineral transformations and weakening

mechanisms along the Alpine Fault, New Zealand. Geological Society, London,

Special Publications, 186(1), 85–101.

Wibberley, C. (1999). Are feldspar-to-mica reactions necessarily reaction-softening

processes in fault zones? Journal of Structural Geology, 21(8–9), 1219–1227.

Wu, Y.H., Yeh, E.C., Dong, J.J., Kuo, L.W., Hsu, J.Y., & Hung, J.H. (2008). Core-log

integration studies in hole-A of Taiwan Chelungpu-fault Drilling Project.

Geophysical Journal International, 174(3), 949–965.

Yamaguchi, A., Cox, S. F., Kimura, G., & Okamoto, S. (2011). Dynamic changes in

fluid redox state associated with episodic fault rupture along a megasplay fault in a

subduction zone. Earth and Planetary Science Letters, 302(3), 369–377.

Yamamoto, Y. (2006). Systematic variation of shear-induced physical properties and

fabrics in the Miura–Boso accretionary prism: The earliest processes during offscraping. Earth and Planetary Science Letters, 244(1–2), 270–284.

Yamamoto, Y., & Kawakami, S. (2005). Rapid tectonics of the Late Miocene Boso

accretionary prism related to the Izu–Bonin arc collision. Island Arc, 14(2), 178–

198.

Yamamoto, Y., Mukoyoshi, H., & Ogawa, Y. (2005). Structural characteristics of

shallowly buried accretionary prism: Rapidly uplifted Neogene accreted sediments

on the Miura-Boso Peninsula, central Japan. Tectonics, 24(5).

Zhu, C.M., Ye, W.M., Chen, Y.G., Chen, B., & Cui, Y.J. (2013). Influence of salt

solutions on the swelling pressure and hydraulic conductivity of compacted

GMZ01 bentonite. Engineering Geology, 166, 74–80.

83

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る