リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Barthelonids represent a deep-branching metamonad clade with mitochondrion-related organelles predicted to generate no ATP」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Barthelonids represent a deep-branching metamonad clade with mitochondrion-related organelles predicted to generate no ATP

YAZAKI, Euki KUME, Keitaro SHIRATORI, Takashi EGLIT, Yana TANIFUJI, Goro HARADA, Ryo SIMPSON, Alastair G.B. ISHIDA, Ken-ichiro HASHIMOTO, Tetsuo 稲垣, 祐司 筑波大学 DOI:32873198

2021.06.03

概要

We here report the phylogenetic position of barthelonids, small anaerobic flagellates previously examined using light microscopy alone. Barthelona spp. were isolated from geographically distinct regions and we established five laboratory strains. Transcriptomic data generated from one Barthelona strain (PAP020) were used for large-scale, multi-gene phylogenetic (phylogenomic) analyses. Our analyses robustly placed strain PAP020 at the base of the Fornicata clade, indicating that barthelonids represent a deep-branching metamonad clade. Considering the anaerobic/microaerophilic nature of barthelonids and preliminary electron microscopy observations on strain PAP020, we suspected that barthelonids possess functionally and structurally reduced mitochondria (i.e. mitochondrion-related organelles or MROs). The metabolic pathways localized in the MRO of strain PAP020 were predicted based on its transcriptomic data and compared with those in the MROs of fornicates. We here propose that strain PAP020 is incapable of generating ATP in the MRO, as no mitochondrial/MRO enzymes involved in substrate-level phosphorylation were detected. Instead, we detected a putative cytosolic ATP-generating enzyme (acetyl-CoA synthetase), suggesting that strain PAP020 depends on ATP generated in the cytosol. We propose two separate losses of substrate-level phosphorylation from the MRO in the clade containing barthelonids and (other) fornicates.

この論文で使われている画像

参考文献

1.

2.

3.

4.

Burki F. 2014 The eukaryotic tree of life from a

global phylogenomic perspective. Cold Spring Harb.

Perspect. Biol. 6, a016147. (doi:10.1101/cshperspect.

a016147)

Burki F, Roger AJ, Brown MW, Simpson AGB. 2019

The new tree of eukaryotes. Trends Ecol. Evol. 35,

43–55. (doi:10.1016/j.tree.2019.08.008)

Keeling PJ, Burki F. 2019 Progress towards the tree

of eukaryotes. Curr. Biol. 29, R808–R817. (doi:10.

1016/j.cub.2019.07.031)

Bleidorn C. 2016 Third generation sequencing:

technology and its potential impact on evolutionary

biodiversity research. Syst. Biodivers. 14, 1–8.

(doi:10.1080/14772000.2015.1099575)

5.

6.

7.

Vincent AT, Derome N, Boyle B, Culley AI, Charette

SJ. 2017 Next-generation sequencing (NGS) in the

microbiological world: how to make the most of

your money. J. Microbiol. Methods. 138, 60–71.

(doi:10.1016/j.mimet.2016.02.016)

Lax G, Eglit Y, Eme L, Bertrand EM, Roger AJ,

Simpson AGB. 2018 Hemimastigophora is a

novel supra-kingdom-level lineage of eukaryotes.

Nature 564, 410–414. (doi:10.1038/s41586-0180708-8)

Kolisko M, Boscaro V, Burki F, Lynn DH, Keeling PJ.

2014 Single-cell transcriptomics for microbial

eukaryotes. Curr. Biol. 24, R1081–R1082. (doi:10.

1016/j.cub.2014.10.026)

8.

Strassert JFH, Jamy M, Mylnikov AP, Tikhonenkov

DV, Burki F. 2019 New phylogenomic analysis of the

enigmatic phylum Telonemia further resolves the

eukaryote tree of life. Mol. Biol. Evol. 36, 757–765.

(doi:10.1093/molbev/msz012)

9. Zhao S, Burki F, Brte J, Keeling PJ, Klaveness D,

Shalchian-Tabrizi K. 2012 Collodictyon—an ancient

lineage in the tree of eukaryotes. Mol. Biol. Evol.

29, 1557–1568. (doi:10.1093/molbev/mss001)

10. Yabuki A, Kamikawa R, Ishikawa SA, Kolisko M, Kim

E, Tanabe AS, Kume K, Ishida K-I, Inagaki Y. 2014

Palpitomonas bilix represents a basal cryptist

lineage: insight into the character evolution in

Cryptista. Sci. Rep. 4, 4641. (doi:10.1038/srep04641)

Proc. R. Soc. B 287: 20201538

barthelonids

royalsocietypublishing.org/journal/rspb

gain of

but after assessing the data from stain PAP020, this particular

event needs to be pushed back at least to the common ancestor

of fornicates and barthelonids, as strain PAP020 and multiple

early branching CLOs (e.g. C. membranifera) share ACS2. It is

noteworthy that acquisition of ACS2 may extend back to the

last common metamonad ancestor, since a possibly directly

related ACS2 is also present in Paratrimastix (electronic supplementary material, figure S5). Secondly, as barthelonids are

distantly related to D. brevis and diplomonads, loss of substrate-level phosphorylation in barthelonid MROs, if this is

the case, can be assumed to have occurred independently

from the loss in the common ancestor of D. brevis and diplomonads (highlighted by blue diamonds in figure 5). Further,

barthelonids and the common ancestor of D. brevis and

diplomonads seem to have accommodated the loss of

MRO-localized substrate-level phosphorylation via possessing

evolutionarily distinct ACS homologues (ACS2 and ACS1,

represented by yellow and red lines, respectively, in figure 5).

Finally, pyruvate metabolism might have been relocated from

the MRO to the cytosol in strain PAP020 as seen in G. intestinalis

[54–56].

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

modification of Sato’s method. J. Electron Microsc.

35, 304–306. (doi:10.1093/oxfordjournals.jmicro.

a050582)

Sato T. 1968 A modified method for lead staining of

thin sections. J. Electron Microsc. (Tokyo) 17,

158–159. (doi:10.1093/oxfordjournals.jmicro.

a049610)

Engel SR et al. 2014 The reference genome

sequence of Saccharomyces cerevisiae: then and

now. G3 Genes Genomes Genet. 4, 389–398.

(doi:10.1534/g3.113.008995)

Fukasawa Y, Tsuji J, Fu SC, Tomii K, Horton P, Imai

K. 2015 MitoFates: improved prediction of

mitochondrial targeting sequences and their

cleavage sites. Mol. Cell. Proteomics 14, 1113–1126.

(doi:10.1074/mcp.M114.043083)

Kume K, Amagasa T, Hashimoto T, Kitagawa H.

2018 NommPred: prediction of mitochondrial and

mitochondrion-related organelle proteins of

nonmodel organisms. Evol. Bioinform. 14, 1–12.

(doi:10.1177/1176934318819835)

Li B, Dewey CN. 2011 RSEM: accurate transcript

quantification from RNA-Seq data with or without a

reference genome. BMC Bioinf. 12, 323. (doi:10.

1186/1471-2105-12-323)

Kulda J, Nohýnková E, Cepicka I. 2017

Retortamonadida (with notes on Carpediemonaslike organisms and Caviomonadidae). In Handbook

of the protists, 2nd ed., pp. 1247–1278. Berlin,

Germany: Springer International Publishing.

Yubuki N, Simpson AGB, Leander BS. 2013

Comprehensive ultrastructure of Kipferlia bialata

provides evidence for character evolution within the

Fornicata (Excavata). Protist 164, 423–439. (doi:10.

1016/j.protis.2013.02.002)

Yubuki N, Inagaki Y, Nakayama T, Inouye I. 2007

Ultrastructure and ribosomal RNA phylogeny of the

free-living heterotrophic flagellate Dysnectes brevis

n. gen., n. sp., a new member of the Fornicata.

J. Eukaryot. Microbiol. 54, 191–200. (doi:10.1111/j.

1550-7408.2007.00252.x)

Simpson AGB, Patterson DJ. 1999 The ultrastructure

of Carpediemonas membranifera (Eukaryota) with

reference to the ‘excavate hypothesis’.

Eur. J. Protistol. 35, 353–370. (doi:10.1016/S09324739(99)80044-3)

Tovar J, León-Avila G, Sánchez LB, Sutak R, Tachezy J,

Van Der Giezen M, Hernández M, Müller M, Lucocq

JM. 2003 Mitochondrial remnant organelles of Giardia

function in iron-sulphur protein maturation. Nature

426, 172–176. (doi:10.1038/nature01945)

Cenci U et al. 2018 Nuclear genome sequence of the

plastid-lacking cryptomonad Goniomonas avonlea

provides insights into the evolution of secondary

plastids. BMC Biol. 16, 137. (doi:10.1186/s12915018-0593-5)

Burki F et al. 2009 Large-scale phylogenomic

analyses reveal that two enigmatic protist lineages,

Telonemia and Centroheliozoa, are related to

photosynthetic chromalveolates. Genome Biol. Evol.

1, 231–238. (doi:10.1093/gbe/evp022)

Inagaki Y, Nakajima Y, Sato M, Sakaguchi M,

Hashimoto T. 2009 Gene sampling can bias multi-

Proc. R. Soc. B 287: 20201538

24. Ronquist F et al. 2012 Mrbayes 3.2: efficient

Bayesian phylogenetic inference and model choice

across a large model space. Syst. Biol. 61, 539–542.

(doi:10.1093/sysbio/sys029)

25. Grabherr MG et al. 2011 Full-length transcriptome

assembly from RNA-Seq data without a reference

genome. Nat. Biotechnol. 29, 644–652. (doi:10.

1038/nbt.1883)

26. Haas BJ et al. 2013 De novo transcript sequence

reconstruction from RNA-seq using the Trinity

platform for reference generation and analysis.

Nat. Protoc. 8, 1494–1512. (doi:10.1038/nprot.

2013.084)

27. Tanifuji G, Takabayashi S, Kume K, Takagi M,

Nakayama T, Kamikawa R, Inagaki Y, Hashimoto T.

2018 The draft genome of Kipferlia bialata reveals

reductive genome evolution in fornicate parasites.

PLoS ONE 13, e0194487. (doi:10.1371/journal.pone.

0194487)

28. Yabuki A, Gyaltshen Y, Heiss AA, Fujikura K, Kim E.

2018 Ophirina amphinema n. gen., n. sp., a new

deeply branching discobid with phylogenetic affinity

to jakobids. Sci. Rep. 8, 16219. (doi:10.1038/

s41598-018-34504-6)

29. Leger MM et al. 2017 Organelles that illuminate the

origins of Trichomonas hydrogenosomes and Giardia

mitosomes. Nat. Ecol. Evol. 1, 92. (doi:10.1038/

s41559-017-0092)

30. Stamatakis A. 2014 RAxML version 8: a tool for

phylogenetic analysis and post-analysis of large

phylogenies. Bioinformatics 30, 1312–1313. (doi:10.

1093/bioinformatics/btu033)

31. Wang HC, Minh BQ, Susko E, Roger AJ. 2018

Modeling site heterogeneity with posterior mean

site frequency profiles accelerates accurate

phylogenomic estimation. Syst. Biol. 67, 216–235.

(doi:10.1093/sysbio/syx068)

32. Lartillot N, Philippe H. 2004 A Bayesian mixture

model for across-site heterogeneities in the aminoacid replacement process. Mol. Biol. Evol. 21,

1095–1109. (doi:10.1093/molbev/msh112)

33. Lartillot N, Philippe H. 2006 Computing

Bayes factors using thermodynamic integration.

Syst. Biol. 55, 195–207. (doi:10.1080/106351

50500433722)

34. Lartillot N et al. 2007 Suppression of long-branch

attraction artefacts in the animal phylogeny using a

site-heterogeneous model. BMC Evol. Biol. 7, S4.

(doi:10.1186/1471-2148-7-S1-S4)

35. Shimodaira H. 2002 An approximately

unbiased test of phylogenetic tree selection. Syst.

Biol. 51, 492–508. (doi:10.1080/106351

50290069913)

36. Shimodaira H, Hasegawa M. 2001 CONSEL: for

assessing the confidence of phylogenetic tree

selection. Bioinformatics 17, 1246–1247. (doi:10.

1093/bioinformatics/17.12.1246)

37. Susko E, Field C, Blouin C, Roger AJ. 2003

Estimation of rates-across-sites distributions in

phylogenetic substitution models. Syst. Biol. 52,

594–603. (doi:10.1080/10635150390235395)

38. Hanaichi T, Sato T, Iwamoto T, Malavasi-Yamashiro

J, Hoshino M, Mizuno N. 1986 A stable lead by

royalsocietypublishing.org/journal/rspb

11. Burki F, Kaplan M, Tikhonenkov DV, Zlatogursky V,

Minh BQ, Radaykina LV, Smirnov A, Mylnikov AP,

Keeling PJ. 2016 Untangling the early diversification

of eukaryotes: a phylogenomic study of the

evolutionary origins of Centrohelida, Haptophyta

and Cryptista. Proc. R. Soc. B 283, 20152802.

(doi:10.1098/rspb.2015.2802)

12. Janouškovec J, Tikhonenkov DV, Burki F, Howe AT,

Rohwer FL, Mylnikov AP, Keeling PJ. 2017 A new

lineage of eukaryotes illuminates early

mitochondrial genome reduction. Curr. Biol. 27,

3717–3724. (doi:10.1016/j.cub.2017.10.051)

13. Brown MW et al. 2018 Phylogenomics places

orphan protistan lineages in a novel eukaryotic

super-group. Genome Biol. Evol. 10, 427–433.

(doi:10.1093/gbe/evy014)

14. Gawryluk RMR, Tikhonenkov DV, Hehenberger E,

Husnik F, Mylnikov AP, Keeling PJ. 2019 Nonphotosynthetic predators are sister to red algae.

Nature 572, 240–243. (doi:10.1038/s41586-0191398-6)

15. Kamikawa R et al. 2014 Gene content evolution in

discobid mitochondria deduced from the

phylogenetic position and complete mitochondrial

genome of Tsukubamonas globosa. Genome Biol.

Evol. 6, 306–315. (doi:10.1093/gbe/evu015)

16. Bernard C, Simpson AGB, Patterson DJ. 2000 Some

free-living flagellates (Protista) from anoxic habitats.

Ophelia 52, 113–142. (doi:10.1080/00785236.1999.

10409422)

17. Lee WJ. 2002 Some free-living heterotrophic

flagellates from marine sediments of Inchon and

Ganghwa Island, Korea. Korean J. Biol. Sci. 6,

125–143. (doi:10.1080/12265071.2001.9647643)

18. Lee WJ. 2006 Some free-living heterotrophic

flagellates from marine sediments of tropical

Australia. Ocean Sci. J. 41, 75–95. (doi:10.1007/

BF03022413)

19. Nakayama T, Marin B, Kranz HD, Surek B,

Huss VAR, Inouye I, Melkonian M. 1998

The basal position of scaly green flagellates among

the green algae (Chlorophyta) is revealed by

analyses of nuclear-encoded SSU rRNA sequences.

Protist 149, 367–380. (doi:10.1016/S14344610(98)70043-4)

20. Yabuki A, Inagaki Y, Ishida K. 2010 Palpitomonas

bilix gen. et sp. nov.: a novel deep-branching

heterotroph possibly related to Archaeplastida or

Hacrobia. Protist 161, 523–538. (doi:10.1016/j.

protis.2010.03.001)

21. Katoh K. 2002 MAFFT: a novel method for rapid

multiple sequence alignment based on fast Fourier

transform. Nucleic Acids Res. 30, 3059–3066.

(doi:10.1093/nar/gkf436)

22. Katoh K, Standley DM. 2014 MAFFT: iterative

refinement and additional methods. Methods Mol.

Biol. 1079, 131–146. (doi:10.1007/978-1-62703646-7_8)

23. Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ.

2015 IQ-TREE: a fast and effective stochastic

algorithm for estimating maximum-likelihood

phylogenies. Mol. Biol. Evol. 32, 268–274. (doi:10.

1093/molbev/msu300)

Genet. Dev. 8, 616–623. (doi:10.1016/S0959437X(98)80028-2)

54. Lindmark DG. 1980 Energy metabolism of the

anaerobic protozoon Giardia lamblia. Mol. Biochem.

Parasitol. 1, 1–12. (doi:10.1016/01666851(80)90037-7)

55. Muller M et al. 2012 Biochemistry and evolution of

anaerobic energy metabolism in eukaryotes.

Microbiol. Mol. Biol. Rev. 76, 444–495. (doi:10.

1128/MMBR.05024-11)

56. Townson SM, Upcroft JA, Upcroft P. 1996

Characterisation and purification of pyruvate:

ferredoxin oxidoreductase from Giardia duodenalis.

Mol. Biochem. Parasitol. 79, 183–193. (doi:10.1016/

0166-6851(96)02661-8)

57. Yazaki E et al. 2020 Data from: Barthelonids

represent a deep-branching metamonad clade with

mitochondrion-related organelles predicted to

generate no ATP. Dryad Digital Repository. (doi:10.

5061/dryad.3tx95x6bn)

10

royalsocietypublishing.org/journal/rspb

gene phylogenetic inferences: the relationship

between red algae and green plants as a case

study. Mol. Biol. Evol. 26, 1171–1178. (doi:10.1093/

molbev/msp036)

52. Felsenstein J. 1978 Cases in which parsimony or

compatibility methods will be positively misleading.

Syst. Biol. 27, 401–410. (doi:10.1093/sysbio/

27.4.401)

53. Philippe H, Laurent J. 1998 How good

are deep phylogenetic trees? Curr. Opin.

Proc. R. Soc. B 287: 20201538

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る