リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「A novel structural maintenance of chromosomes (SMC)-related protein family specific to Archaea」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

A novel structural maintenance of chromosomes (SMC)-related protein family specific to Archaea

Yoshinaga, Mari 中山, 卓郎 稲垣, 祐司 筑波大学 DOI:35992648

2022.11.08

概要

The ATPases belonging to the structural maintenance of chromosomes (SMC) superfamily are involved in the maintenance of chromosome organization and dynamics, as well as DNA repair. The major proteins in this superfamily recognized to date are either conserved among the three domains of Life (i.e., SMC and Rad50) or specific to Bacteria (i.e., RecF, RecN, and MukB). In Archaea, no protein related to SMC (SMC-related protein) with a broad taxonomic distribution has been reported. Nevertheless, two SMC-related proteins, namely coalescin and Sph, have been identified in crenarchaea Sulfolobus spp. and the euryarchaeon Halobacterium salinarum, respectively, hinting that the diversity of SMC-related proteins has been overlooked in Archaea. In this study, we report a novel SMC-related protein that is distributed among broad archaeal lineages and termed “Archaea-specific SMC-related proteins” or “ASRPs.” We further demonstrate that the ASRP family encloses both coalescin and Sph but the two proteins represent only a tip of the diversity of this family.

参考文献

Capella-Gutierrez, S., Silla-Martinez, J. M., and Gabaldon, T. (2009). trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973. doi: 10.1093/bioinformatics/ btp348

Cobbe, N., and Heck, M. M. S. (2000). Review: SMCs in the world of chromosome biology— From prokaryotes to higher eukaryotes. J. Struct. Biol. 129, 123–143. doi: 10.1006/jsbi.2000.4255

Cobbe, N., and Heck, M. M. S. (2004). The evolution of SMC proteins: phylogenetic analysis and structural implications. Mol. Biol. Evol. 21, 332–347. doi: 10.1093/molbev/msh023

Cockram, C., Thierry, A., Gorlas, A., Lestini, R., and Koszul, R. (2021). Euryarchaeal genomes are folded into SMC-dependent loops and domains, but lack transcription-mediated compartmentalization. Mol. Cell 81, 459–472.e10. doi: 10.1016/j.molcel.2020.12.013

Ettema, T. J. G., Lindås, A.-C., and Bernander, R. (2011). An actin-based cytoskeleton in archaea: an archaeal cytoskeleton. Mol. Microbiol. 80, 1052–1061. doi: 10.1111/j.1365-2958.2011.07635.x

Fu, L., Niu, B., Zhu, Z., Wu, S., and Li, W. (2012). CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28, 3150–3152. doi: 10.1093/bioinformatics/bts565

Hegde, S. P., Qin, M., Li, X., Atkinson, M. A. L., Clark, A. J., Rajagopalan, M., et al. (1996). Interactions of RecF protein with RecO, RecR, and single- stranded DNA binding proteins reveal roles for the RecF–RecO–RecR complex in DNA repair and recombination. Proc. Natl. Acad. Sci. U.S.A. 93, 14468–14473. doi: 10.1073/pnas.93.25.14468

Herrmann, U., and Soppa, J. (2002). Cell cycle-dependent expression of an essential SMC-like protein and dynamic chromosome localization in the archaeon Halobacterium salinarum. Mol. Microbiol. 46, 395–409. doi: 10.1046/j.1365-2958. 2002.03181.x

Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., et al. (2021). Highly accurate protein structure prediction with AlhpaFold. Nature 596, 583–589. doi: 10.1038/s41586-021-03819-2

Kamada, K., and Barillà, D. (2018). Combing chromosomal DNA mediated by the SMC complex: structure and mechanisms. BioEssays 40:1700166. doi: 10.1002/ bies.201700166

Katoh, K. (2002). MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30, 3059–3066. doi: 10.1093/nar/gkf436

Keyamura, K., Sakaguchi, C., Kubota, Y., Niki, H., and Hishida, T. (2013). RecA protein recruits structural maintenance of chromosomes (SMC)-like RecN protein to DNA double-strand breaks. J. Biol. Chem. 288, 29229–29237. doi: 10.1074/jbc. M113.485474

Kinoshita, E., van der Linden, E., Sanchez, H., and Wyman, C. (2009). RAD50, an SMC family member with multiple roles in DNA break repair: how does ATP affect function? Chromosome Res. 17, 277–288. doi: 10.1007/s10577-008-9018-6

Lartillot, N., Brinkmann, H., and Philippe, H. (2007). Suppression of long- branch attraction artefacts in the animal phylogeny using a site-heterogeneous model. BMC Evol. Biol. 7:S4. doi: 10.1186/1471-2148-7-S1-S4

Lartillot, N., and Philippe, H. (2004). A Bayesian mixture model for across- site heterogeneities in the amino-acid replacement process. Mol. Biol. Evol. 21, 1095–1109. doi: 10.1093/molbev/msh112

Lartillot, N., and Philippe, H. (2006). Computing Bayes factors using thermodynamic integration. Syst. Biol. 55, 195–207. doi: 10.1080/ 10635150500433722

Losada, A., and Hirano, T. (2005). Dynamic molecular linkers of the genome: the first decade of SMC proteins. Genes Dev. 19, 1269–1287. doi: 10.1101/gad. 1320505

Nguyen, L.-T., Schmidt, H. A., von Haeseler, A., and Minh, B. Q. (2015). IQ- TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274. doi: 10.1093/molbev/msu300

Niki, H., Jaffé, A., Imamura, R., Ogura, T., and Hiraga, S. (1991). The new gene mukB codes for a 177 kd protein with coiled-coil domains involved in chromosome partitioning of E. coli. EMBO J. 10, 183–193. doi: 10.1002/j.1460- 2075.1991.tb07935.x

Ruepp, A., Wanner, G., and Soppa, J. (1997). A 71-kDa protein from Halobacterium salinarium belongs to a ubiquitous P-loop ATPase superfamily with head-rod-tail structure. Arch. Microbiol. 169, 1–9. doi: 10.1007/s002030050534

Simm, D., Hatje, K., and Kollmar, M. (2015). Waggawagga: comparative visualization of coiled-coil predictions and detection of stable single α-helices (SAH domains). Bioinformatics 31, 767–769. doi: 10.1093/bioinformatics/btu700

Takemata, N., Samson, R. Y., and Bell, S. D. (2019). Physical and functional compartmentalization of archaeal chromosomes. Cell 179, 165–179.e18. doi: 10. 1016/j.cell.2019.08.036

Wang, H.-C., Minh, B. Q., Susko, E., and Roger, A. J. (2018). Modeling site heterogeneity with posterior mean site frequency profiles accelerates accurate phylogenomic estimation. Syst. Biol. 67, 216–235. doi: 10.1093/sysbio/syx068

Yoshinaga, M., and Inagaki, Y. (2021). Ubiquity and origins of structural maintenance of chromosomes (SMC) proteins in eukaryotes. Genome Biol. Evol. 13:evab256. doi: 10.1093/gbe/evab256

参考文献をもっと見る