リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「内因性グルココルチコイド過剰症患者における骨と血管障害の併存」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

内因性グルココルチコイド過剰症患者における骨と血管障害の併存

矢野(井上), 千絵子 YANO(INOUE), Chieko ヤノ(イノウエ), チエコ 九州大学

2023.09.25

概要

九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Coexistence of bone and vascular disturbances
in patients with endogenous glucocorticoid
excess
矢野(井上), 千絵子

https://hdl.handle.net/2324/7157303
出版情報:Kyushu University, 2023, 博士(医学), 課程博士
バージョン:
権利関係:Creative Commons Attribution 4.0 International

氏 名:

矢野(井上) 千絵子

論文名:

Coexistence of bone and vascular disturbances in patients with endogenous
glucocorticoid excess
(内因性グルココルチコイド過剰症患者における骨と血管障害の併存)

区 分:



論 文 内 容 の 要 旨

目的 骨疾患と血管疾患は共通の発症メカニズムを持つと考えられている。過剰なグルココルチコイ
ドは、心血管系と代謝系の恒常性の重要な調節因子であり、両疾患を同時に促進する可能性がある。
我々は骨と血管の疾患が併存する背景にグルココルチコイドの過剰があるかどうかを、内因性クッシ
ング症候群(CS)を用い、グルココルチコイド過剰が骨・血管疾患の併存の根底にあるかどうかを検
討した。
方法 副腎腫瘍(AT)患者194名を対象とした:自律的なコルチゾール分泌(ACS、n=97)および非機
能性AT(n=97)である。ACSはさらに、顕性CS(n=17)と不顕性CS(SCS, n=80)に分類された。動脈
硬化は上腕足首間脈波伝播速度(baPWV)≧1,800cm/sと定義した。
結果 ACS患者では、椎体骨折と動脈硬化の併存率(23% vs. 2%、p<0.001)、椎体骨折と腹部大動
脈石灰化(22% vs. 1%、p<0.001)の併存率が高値であった。ロジスティック回帰分析では、ACS患
者は、baPWVは海綿骨スコア(TBS、r=-0.33、p=0.002)と負の相関があったが、骨密度とは相関がな
く、椎体骨折は動脈硬化と相関があった。多変量分散分析では、グルココルチコイド過剰の程度
(CS、SCS、および非機能性ATと定義される)が、TBSと動脈硬化(baPWV)の相関を決定した(partial
η2 =0.07、p<0.001)。共分散分析では、椎体骨折と動脈硬化が併存している患者は、そうでない患
者に比べて、1mgデキサメタゾン抑制試験後の血清コルチゾールが高値であった。
結論 内因性グルココルチコイド過剰症では、骨および血管疾患が併存していることが多く、骨量減
少ではなく骨質悪化が動脈硬化と関連していた。したがって、グルココルチコイド過剰は、骨-血管軸
を乱す可能性がある。

この論文で使われている画像

参考文献

Bagger, Y.Z., Tank´

o, L.B., Alexandersen, P., Qin, G., Christiansen, C., 2006. Radiographic

measure of aorta calcification is a site-specific predictor of bone loss and fracture risk

at the hip. J. Intern. Med. 259 (6), 598–605.

van den Beld, A.W., Kaufman, J.M., Zillikens, M.C., et al., 2018. The physiology of

endocrine systems with ageing. Lancet Diabetes Endocrinol. 6 (8), 647–658.

Bernardi, S., Giudici, F., Barbato, V., et al., 2021. Meta-analysis on the effect of mild

primary hyperparathyroidism and parathyroidectomy upon arterial stiffness. J. Clin.

Endocrinol. Metab. 106 (6), 1832–1843.

Chiodini, I., Morelli, V., Masserini, B., et al., 2009. Bone mineral density, prevalence of

vertebral fractures, and bone quality in patients with adrenal incidentalomas with

and without subclinical hypercortisolism: an Italian multicenter study. J. Clin.

Endocrinol. Metab. 94 (9), 3207–3214.

Dalle Carbonare, L., Arlot, M.E., Chavassieux, P.M., et al., 2001. Comparison of

trabecular bone microarchitecture and remodeling in glucocorticoid-induced and

postmenopausal osteoporosis. J. Bone Miner. Res. 16 (1), 97–103.

De Mar´e, A., Opdebeeck, B., Neven, E., D'Haese, P.C., Verhulst, A., 2022. Sclerostin

protects against vascular calcification development in mice. J. Bone Miner. Res. 37

(4), 687–699.

Ensrud, K.E., Crandall, C.J., 2017. Osteoporosis. Ann. Intern. Med. 167, ITC17-32.

Faggiano, A., Pivonello, R., Spiezia, S., et al., 2003. Cardiovascular risk factors and

common carotid artery caliber and stiffness in patients with Cushing's disease during

active disease and 1 year after disease remission. J. Clin. Endocrinol. Metab. 88 (6),

2527–2533.

Fassnacht, M., Arlt, W., Bancos, I., et al., 2016. Management of adrenal incidentalomas:

European Society of Endocrinology Clinical Practice Guideline in collaboration with

the European network for the study of adrenal tumors. Eur. J. Endocrinol. 175 (2),

G1–G34.

Florez, H., Hern´

andez-Rodríguez, J., Muxi, A., et al., 2020. Trabecular bone score

improves fracture risk assessment in glucocorticoid-induced osteoporosis.

Rheumatology (Oxford) 59 (7), 1574–1580.

Genant, H.K., Wu, C.Y., van Kujik, C., et al., 1993. Vertebral fracture assessment using a

semiquantitative technique. J. Bone Miner. Res. 8, 1137–1148.

van Haalen, F.M., Broersen, L.H., Jorgensen, J.O., Pereira, A.M., Dekkers, O.M., 2015.

Management of endocrine disease: mortality remains increased in Cushing's disease

despite biochemical remission: a systematic review and meta-analysis. Eur. J.

Endocrinol. 172 (4), R143–R149.

Hardy, R.S., Zhou, H., Seibel, M.J., Cooper, M.S., 2018. Glucocorticoids and bone:

consequences of endogenous and exogenous excess and replacement therapy.

Endocr. Rev. 39 (5), 519–548.

Hermus, A.R., Smals, A.G., Swinkels, L.M., et al., 1995. Bone mineral density and bone

turnover before and after surgical cure of Cushing's syndrome. J. Clin. Endocrinol.

Metab. 80 (10), 2859–2865.

Herrington, W., Lacey, B., Sherliker, P., Armitage, J., Lewington, S., 2016. Epidemiology

of atherosclerosis and the potential to reduce the global burden of atherothrombotic

disease. Circ. Res. 118 (4), 535–546.

Kanis, J.A., 2002. Diagnosis of osteoporosis and assessment of fracture risk. Lancet 359,

1929–1936.

Kattoor, A.J., Pothineni, N.V.K., Palagiri, D., Mehta, J.L., 2017. Oxidative stress in

atherosclerosis. Curr. Atheroscler. Rep. 19 (11), 42.

Kauppila, L.I., Polak, J.F., Cupples, L.A., Hannan, M.T., Kiel, D.P., et al., 1997. New

indices to classify location, severity and progression of calcific lesions in the

abdominal aorta: a 25-year follow-up study. Atherosclerosis 132, 245–250.

Khosla, S., Farr, J.N., Kirkland, J.L., 2018. Inhibiting cellular senescence: a new

therapeutic paradigm for age-related osteoporosis. J. Clin. Endocrinol. Metab. 103

(4), 1282–1290.

Kirton, J.P., Wilkinson, F.L., Canfield, A.E., Alexander, M.Y., 2006. Dexamethasone

downregulates calcification-inhibitor molecules and accelerates osteogenic

differentiation of vascular pericytes: implications for vascular calcification. Circ. Res.

98 (10), 1264–1272.

Lewis, J.R., Eggermont, C.J., Schousboe, J.T., et al., 2019. Association between

abdominal aortic calcification, bone mineral density, and fracture in older women.

J. Bone Miner. Res. 34 (11), 2052–2060.

van Lierop, A.H., van der Eerden, A.W., Hamdy, N.A., Hermus, A.R., den Heijer, M.,

Papapoulos, S.E., 2012. Circulating sclerostin levels are decreased in patients with

endogenous hypercortisolism and increase after treatment. J. Clin. Endocrinol.

Metab. 97 (10), E1953–E1957.

Lopez, D., Luque-Fernandez, M.A., Steele, A., et al., 2016. "Nonfunctional" adrenal

tumors and the risk for incident diabetes and cardiovascular outcomes: a cohort

study. Ann. Intern. Med. 165 (8), 533–542.

Manolagas, S.C., 2010. From estrogen-centric to aging and oxidative stress: a revised

perspective of the pathogenesis of osteoporosis. Endocr. Rev. 31 (3), 266–300.

Minetto, M., Reimondo, G., Osella, G., Ventura, M., Angeli, A., Terzolo, M., 2004. Bone

loss is more severe in primary adrenal than in pituitary-dependent Cushing's

syndrome. Osteoporos. Int. 15 (11), 855–861.

Mori, K., Shioi, A., Jono, S., Nishizawa, Y., Morii, H., 1999. Dexamethasone enhances in

vitro vascular calcification by promoting osteoblastic differentiation of vascular

smooth muscle cells. Arterioscler. Thromb. Vasc. Biol. 19 (9), 2112–2118.

6. Conclusion

In endogenous glucocorticoid excess, bone and vascular diseases

frequently coexisted, and deteriorated bone quality, not bone loss, was

related to arterial stiffness. This study may contribute to the appropriate

management of such patients and provide new insights into our un­

derstanding of the bone-vascular axis.

Data availability

Data supporting the findings presented in this study are available

from the corresponding authors upon reasonable request.

Funding

This work was supported in part by the grants from “JSPS KAKENHI”

(JP20K16525 and 21J40043 to M. Y-U., 22H04993 to Y.O., and

22K08627 to H.U.), “The JSBMR Rising Stars Grant” (to M. Y-U.),

“JAPAN Osteoporosis Foundation” (to M. Y-U.), “Takeda Science

Foundation” (to H.U.), “Kaibara Morikazu Medical Science Promotion

Foundation” (to H.U. and M. Y-U.), “Japan Foundation for Applied

Enzymology” (to H.U. and M. Y-U.), “The Uehara Memorial Foundation”

(to H.U.), and “Secom Science and Technology Foundation” (to Y.O.).

CRediT authorship contribution statement

Conceptualization; CY, MY-U, YO, Data curation; CY, RS, YM, SK, NI,

Formal analysis; CY, MY-U, MF, MO, TF, Funding acquisition; MY-U,

HU, YO, Methodology; HU, MY-U, YO, Project administration; HU,

YM, MY-U, YO; Resources; YM, RS, MY-U, Supervision; HU, NI, RS, ET,

YO, Writing-original draft; CY, MY-U, Writing- review & editing; CY,

MY-U, HU, SY, YO.

Declaration of competing interest

The authors declare that they have no known competing financial

interests or personal relationships that could have appeared to influence

the work reported in this paper.

Acknowledgments

We thank Ms. Chitose Matsuzaki (Department of Medicine and Bio­

regulatory Science, Graduate School of Medical Sciences, Kyushu Uni­

versity), and Ms. Tomoko Kimura and Ms. Noriko Mizoguchi (Division of

Radiology, Department of Medical Technology, Kyushu University

Hospital) for their technical assistance, and the medical staff of

Department of Endocrinology, Metabolism, and Diabetes, Kyushu Uni­

versity Hospital for their support. We also thank Editage (www.editage.

com) for English language editing. M.Y-U. is grateful for the JSPS

Research Fellowship RPD.

C. Yano et al.

Bone Reports 17 (2022) 101610

Tauchmanov`

a, L., Pivonello, R., Di Somma, C., et al., 2006. Bone demineralization and

vertebral fractures in endogenous cortisol excess: role of disease etiology and

gonadal status. J. Clin. Endocrinol. Metab. 91 (5), 1779–1784.

Thompson, B., Towler, D.A., 2012. Arterial calcification and bone physiology: role of the

bone-vascular axis. Nat. Rev. Endocrinol. 8 (9), 529–543.

oth, M., Grossman, A., 2013. Glucocorticoid-induced osteoporosis: lessons from

Cushing's syndrome. Clin. Endocrinol. 79 (1), 1–11.

Townsend, R.R., Wilkinson, I.B., Schiffrin, E.L., et al., 2015. Recommendations for

improving and standardizing vascular research on arterial stiffness: a scientific

statement from the American Heart Association. Hypertension 66 (3), 698–722.

Wagenknecht, L.E., Divers, J., Register, T.C., et al., 2016. Bone mineral density and

progression of subclinical atherosclerosis in African-Americans with type 2 diabetes.

J. Clin. Endocrinol. Metab. 101 (11), 4135–4141.

Yokomoto-Umakoshi, M., Umakoshi, H., Fukumoto, T., et al., 2020. Pheochromocytoma

and paraganglioma: an emerging cause of secondary osteoporosis. Bone 115221.

Yokomoto-Umakoshi, M., Umakoshi, H., Ogata, M., et al., 2020. Coexistence of

osteoporosis and atherosclerosis in pheochromocytoma: new insights into its longterm management. Osteoporos. Int. 31 (11), 2151–2160.

Yokomoto-Umakoshi, M., Sakamoto, R., Umakoshi, H., et al., 2020. Unilateral primary

aldosteronism as an independent risk factor for vertebral fracture. Clin. Endocrinol.

92 (3), 206–213.

Yokomoto-Umakoshi, M., Umakoshi, H., Iwahashi, N., Matsuda, Y., Kaneko, H.,

Ogata, M., Fukumoto, T., Terada, E., Nakano, Y., Sakamoto, R., Ogawa, Y., 2021.

Protective role of DHEAS in age-related changes in bone mass and fracture risk.

J. Clin. Endocrinol. Metab. 106 (11), e4580–e4592.

Zhao, D., Guallar, E., Ballantyne, C.M., Post, W.S., Ouyang, P., Vaidya, D., Jia, X.,

Ying, W., Subramanya, V., Ndumele, C.E., Hoogeveen, R.C., Michos, E.D., 2020. Sex

hormones and incident heart failure in men and postmenopausal women: the

atherosclerosis risk in communities study. J. Clin. Endocrinol. Metab. 105 (10),

e3798–e3807.

Munakata, M., 2014. Brachial-ankle pulse wave velocity in the measurement of arterial

stiffness: recent evidence and clinical applications. Curr. Hypertens. Rev. 10 (1),

49–57.

Neary, N.M., Booker, O.J., Abel, B.S., et al., 2013. Hypercortisolism is associated with

increased coronary arterial atherosclerosis: analysis of noninvasive coronary

angiography using multidetector computerized tomography. J. Clin. Endocrinol.

Metab. 98 (5), 2045–2052.

Newell-Price, J., Bertagna, X., Grossman, A.B., Nieman, L.K., 2006. Cushing's syndrome.

Lancet 367 (9522), 1605–1617.

Nieman, L.K., Biller, B.M., Findling, J.W., et al., 2008. The diagnosis of Cushing's

syndrome: an endocrine society clinical practice guideline. J. Clin. Endocrinol.

Metab. 93, 1526–1540.

R Core Team, 2013. R: A Language and Environment for Statistical Computing. R

Foundation for Statistical Computing, Vienna, Austria.

Raisi-Estabragh, Z., Biasiolli, L., Cooper, J., et al., 2021. Poor bone quality is associated

with greater arterial stiffness: insights from the UK biobank. J. Bone Miner. Res. 36

(1), 90–99.

Saito, M., Kida, Y., Kato, S., Marumo, K., 2014. Diabetes, collagen, and bone quality.

Curr. Osteoporos. Rep. 12 (2), 181–188.

Silva, B.C., Bilezikian, J.P., 2015. Parathyroid hormone: anabolic and catabolic actions

on the skeleton. Curr. Opin. Pharmacol. 22, 41–50.

Soen, S., Fukunaga, M., Sugimoto, T., et al., 2013. Diagnostic criteria for primary

osteoporosis: year 2012 revision. J. Bone Miner. Metab. 31 (3), 247–257.

Szulc, P., 2016. Abdominal aortic calcification: a reappraisal of epidemiological and

pathophysiological data. Bone 84, 25–37.

Tank´

o, L.B., Christiansen, C., Cox, D.A., et al., 2005. Relationship between osteoporosis

and cardiovascular disease in postmenopausal women. J. Bone Miner. Res. 20 (11),

1912–1920.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る