リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Structures and dissolution behaviors of quaternary CaO-SrO-P₂O₅-TiO₂ glasses」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Structures and dissolution behaviors of quaternary CaO-SrO-P₂O₅-TiO₂ glasses

Lee, Sungho 大阪大学

2021.04.01

概要

Calcium phosphate glasses have a high potential for use as biomaterials because their composition is similar to that of the mineral phase of bone. Phosphate glasses can dissolve completely in aqueous solution and can contain various elements owing to their acidity. Thus, the glass can be a candidate for therapeutic ion carriers. Recently, we focused on the effect of strontium ions for bone formation, which exhibited dual effects of stimulating bone formation and inhibiting bone resorption. However, large amounts of strontium ions may induce a cytotoxic effect, and there is a need to control their releasing amount. This work reports fundamental data for designing quaternary CaO-SrO-P₂O₅-TiO₂ glasses with pyro- and meta-phosphate compositions to control strontium ion-releasing behavior. The glasses were prepared by substituting CaO by SrO using the melt-quenching method. The SrO/CaO mixed composition exhibited a mixed cation effect on the glassification degree and ion-releasing behavior, which showed non-linear properties with mixed cation compositions of the glasses. Sr²⁺ ions have smaller field strength than Ca²⁺ ions, and the glass network structure may be weakened by the substitution of CaO by SrO. However, glassification degree and chemical durability of pyro- and meta-phosphate glasses increased with substituted all CaO by SrO. This is because titanium groups in the glasses are closely related to their glass network structure by SrO substitution. The P-O-Ti bonds in pyrophosphate glass series and TiO₄ tetrahedra in metaphosphate glass series increased with substitution by SrO. The titanium groups in the glasses were crosslink and/or coordinate phosphate groups to improve glassification degree and chemical durability. Sr²⁺ ion releasing amount of pyrophosphate glasses with >83% SrO substitution was larger than 0.1 mM at day seven, an amount that reported enhanced bone formation by stimulation of osteogenic markers.

参考文献

1. Hoppe, A.; Güldal, N.S.; Boccaccini, A.R. A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials 2011, 32, 2757–2774. [CrossRef]

2. Hoppe, A.; Mourino, V.; Boccaccini, A.R. Therapeutic inorganic ions in bioactive glasses to enhance bone formation and beyond. Biomater. Sci. 2013, 1, 254–256. [CrossRef] [PubMed]

3. Xynos, I.D.; Edgar, A.J.; Buttery, L.D.K.; Hench, L.L.; Polak, J.M. Ionic products of bioactive glass dissolution increase proliferation of human osteoblasts and induce insulin-like growth factor II mRNA expression and protein synthesis. Biochem. Biophys. Res. Commun. 2000, 276, 461–465. [CrossRef]

4. Xynos, I.D.; Hukkanen, J.M.V.; Batten, J.J.; Buttery, D.L.; Hench, L.L.; Polak, M.J. Bioglass®45S5 stimulates osteoblast turnover and enhances bone formation in vitro: Implications and applications for bone tissue engineering. Calcif. Tissue Int. 2000, 67, 321–329. [CrossRef]

5. Julien, M.; Khoshniat, S.; Lacreusette, A.; Gatius, M.; Bozec, A.; Wagner, E.F.; Wittrant, Y.; Masson, M.; Weiss, P.; Beck, L.; et al. Phosphate-dependent regulation of MGP in osteoblasts: Role of ERK1/2 and Fra-1. J. Bone Miner. Res. 2009, 24, 1856–1868.[CrossRef]

6. Yamada, S.; Ota, Y.; Obata, A.; Kasuga, T. Osteoblast-like cell responses to ion products released from magnesium- and silicate- containing calcium carbonates. Bio Med. Mater. Eng. 2017, 28, 47–56. [CrossRef]

7. Marie, P.J. The calcium-sensing receptor in bone cells: A potential therapeutic target in osteoporosis. Bone 2010, 46, 571–576. [CrossRef] [PubMed]

8. Maeno, S.; Niki, Y.; Matsumoto, H.; Morioka, H.; Yatabe, T.; Funayama, A.; Toyama, Y.; Taguchi, T.; Tanaka, J. The effect of calcium ion concentration on osteoblast viability, proliferation and differentiation in monolayer and 3D culture. Biomaterials 2005, 26, 4847–4855. [CrossRef] [PubMed]

9. Marie, P.J. Strontium ranelate: A physiological approach for optimizing bone formation and resorption. Bone 2006, 38, 10–14. [CrossRef]

10. Marie, P.J. Strontium ranelate: New insights into its dual mode of action. Bone 2007, 40, S5–S8. [CrossRef]

11. Chattopadhyay, N.; Quinn, S.J.; Kifor, O.; Ye, C.; Brown, E.M. The calcium-sensing receptor (CaR) is involved in strontium ranelate-induced osteoblast proliferation. Biochem. Pharmacol. 2007, 74, 438–447. [CrossRef]

12. Barbara, A.; Delannoy, P.; Denis, B.G.; Marie, P.J. Normal matrix mineralization induced by strontium ranelate in MC3T3-E1 osteogenic cells. Metabolism 2004, 53, 532–537. [CrossRef]

13. Xue, W.; Moore, J.L.; Hosick, H.L.; Bose, S.; Bandyopadhyay, A.; Lu, W.W.; Cheung, K.M.C.; Luk, K.D.K. Osteoprecursor cell response to strontium-containing hydroxyapatite ceramics. J. Biomed. Mater. Res. A 2006, 79, 804–814. [CrossRef] [PubMed]

14. Qiu, K.; Zhao, X.J.; Wan, C.X.; Zhao, C.S.; Chen, Y.W. Effect of strontium ions on the growth of ROS17/2.8 cells on porous calcium polyphosphate scaffolds. Biomaterials 2006, 27, 1277–1286. [CrossRef] [PubMed]

15. Kim, H.-W.; Kim, Y.-J. Fabrication of strontium-substituted hydroxyapatite scaffolds using 3D printing for enhanced bone regeneration. J. Mater. Sci. 2021, 56, 1673–1684. [CrossRef]

16. Moghanian, A.; Firoozi, S.; Tahriri, M.; Sedghi, A. A comparative study on the in vitro formation of hydroxyapatite, cytotoxicity and antibacterial activity of 58S bioactive glass substituted by Li and Sr. Mater. Sci. Eng. C 2018, 91, 349–360. [CrossRef]

17. Zhang, X.; Cui, J.; Cheng, L.; Lin, K. Enhancement of osteoporotic bone regeneration by strontium-substituted 45S5 bioglass via time-dependent modulation of autophagy and the Akt/mTOR signaling pathway. J. Mater. Chem. B 2021. [CrossRef]

18. Knowles, J.C. Phosphate based glasses for biomedical applications. J. Mater. Chem. 2003, 13, 2395–2401. [CrossRef]

19. Brauer, D.S. Phosphate Glasses. Bio Glasses 2012, 45–64. [CrossRef]

20. Kasuga, T. Glass-based biomaterials design for generating advanced functions. J. Jpn. Soc. Biomater. 2016, 34, 66–70.

21. Abou Neel, E.A.; Pickup, D.M.; Valappil, S.P.; Newport, R.J.; Knowles, J.C. Bioactive functional materials: A perspective on phosphate-based glasses. J. Mater. Chem. 2009, 19, 690–701. [CrossRef]

22. Brow, R.K.; Tallant, D.R.; Warren, W.L.; McIntyre, A.; Day, D.E. Spectroscopic studies of the structure of titanophosphate and calcium titanophosphate glasses. Phys. Chem. Glasses 1997, 38, 300–306.

23. Brauer, D.S.; Karpukhina, N.; Law, R.V.; Hill, R.G. Effect of TiO2 addition on structure, solubility and crystallisation of phosphate invert glasses for biomedical applications. J. Non Cryst. Solids 2010, 356, 2626–2633. [CrossRef]

24. Kasuga, T.; Abe, Y. Calcium phosphate invert glasses with soda and titania. J. Non Cryst. Solids 1999, 243, 70–74. [CrossRef]

25. Lee, S.; Maeda, H.; Obata, A.; Ueda, K.; Narushima, T.; Kasuga, T. Structures and dissolution behaviors of CaO–P2O5–TiO2/Nb2O5 (Ca/P ≥ 1) invert glasses. J. Non Cryst. Solids 2015, 426, 35–42. [CrossRef]

26. Morikawa, H.; Lee, S.; Kasuga, T.; Brauer, D.S. Effects of magnesium for calcium substitution in P2O5–CaO–TiO2 glasses. J. Non Cryst. Solids 2013, 380, 53–59. [CrossRef]

27. Lee, S.; Maeda, H.; Obata, A.; Ueda, K.; Narushima, T.; Kasuga, T. Structure and dissolution behavior of MgO-P2O5-TiO2/Nb2O5 (Mg/P ≥ 1) invert glasses. J. Ceram. Soc. Jpn. 2015, 123, 942–948. [CrossRef]

28. Lee, S.; Nagata, F.; Kato, K.; Kasuga, T. Dissolution behavior of MgO-CaO-P2O5-TiO2 invert glasses. Phosphorus Res. Bull. 2020, 36, 10–14. [CrossRef]

29. Lee, S.; Obata, A.; Kasuga, T. Ion release from SrO-CaO-TiO2-P2O5 glasses in Tris buffer solution. J. Ceram. Soc. Jpn. 2009, 117, 935–938. [CrossRef]

30. Lee, S.; Obata, A.; Brauer, D.S.; Kasuga, T. Dissolution behavior and cell compatibility of alkali-free MgO-CaO-SrO-TiO2-P2O5 glasses for biomedical applications. Biomed. Glasses 2015, 1, 151–158. [CrossRef]

31. Lee, S.; Uehara, H.; Maçon, A.L.B.; Maeda, H.; Obata, A.; Ueda, K.; Narushima, T.; Kasuga, T. Preparation of antibacterial ZnO-CaO-P2O5-Nb2O5 invert glasses. Mater. Trans. 2016, 57, 2072–2076. [CrossRef]

32. Lee, S.; Nakano, T.; Kasuga, T. Structure, dissolution behavior, cytocompatibility, and antibacterial activity of silver-containing calcium phosphate invert glasses. J. Biomed. Mater. Res. A 2017, 105, 3127–3135. [CrossRef]

33. Obata, A.; Takahashi, Y.; Miyajima, T.; Ueda, K.; Narushima, T.; Kasuga, T. Effects of niobium ions released from calcium phosphate invert glasses containing Nb2O5 on osteoblast-like cell functions. Acs Appl. Mater. Interfaces 2012, 4, 5684–5690. [CrossRef] [PubMed]

34. Maeda, H.; Lee, S.; Miyajima, T.; Obata, A.; Ueda, K.; Narushima, T.; Kasuga, T. Structure and physicochemical properties of CaO–P2O5–Nb2O5–Na2O glasses. J. Non Cryst. Solids 2016, 432, 60–64. [CrossRef]

35. Lee, S.; Maeda, H.; Obata, A.; Ueda, K.; Narushima, T.; Kasuga, T. Structures and dissolution behaviors of MgO–CaO–P2O5–Nb2O5 glasses. J. Non Cryst. Solids 2016, 438, 18–25. [CrossRef]

36. Meunier, P.J.; Roux, C.; Seeman, E.; Ortolani, S.; Badurski, J.E.; Spector, T.D.; Cannata, J.; Balogh, A.; Lemmel, E.-M.; Pors-Nielsen, S.; et al. The effects of strontium ranelate on the risk of vertebral fracture in women with postmenopausal osteoporosis. N. Engl. J. Med. 2004, 350, 459–468. [CrossRef] [PubMed]

37. Pors Nielsen, S. The biological role of strontium. Bone 2004, 35, 583–588. [CrossRef]

38. Sato, P.S.; Watanabe, T.; Maeda, H.; Obata, A.; Kasuga, T. Preparation of an antibacterial amorphous thin film by radiofrequency magnetron sputtering using a 65ZnO–30P2O5–5Nb2O5 glass. J. Non Cryst. Solids 2020, 528, 119724. [CrossRef]

39. Bunker, B.C.; Arnold, G.W.; Wilder, J.A. Phosphate glass dissolution in aqueous solutions. J. Non Cryst. Solids 1984, 64, 291–316. [CrossRef]

40. Ray, N.H. Composition—property relationships in inorganic oxide glasses. J. Non Cryst. Solids 1974, 15, 423–434. [CrossRef]

41. Tylkowski, M.; Brauer, D.S. Mixed alkali effects in Bioglass® 45S5. J. Non Cryst. Solids 2013, 376, 175–181. [CrossRef]

42. Ouchetto, M.; Elouadi, B.; Parke, S. Study of lanthanide zinc phosphate glasses by differential thermal analysis. Phys. Chem. Glasses 1991, 32, 22–28.

43. Lee, S. Development of glass-related biomaterials for enhanced bone regeneration via stimulation of cell function. J. Ceram. Soc. Jpn. 2020, 128, 349–356. [CrossRef]

44. Lee, S.; Maçon, A.L.B.; Kasuga, T. Structure and dissolution behavior of orthophosphate MgO–CaO–P2O5–Nb2O5 glass and glass-ceramic. Mater. Lett. 2016, 175, 135–138. [CrossRef]

45. Lee, S.; Nakano, T.; Kasuga, T. Formation and structural analysis of 15MgO–15CaO–8P2O5–4SiO2 glass. J. Non Cryst. Solids 2017, 457, 73–76. [CrossRef]

46. Karakassides, M.A.; Saranti, A.; Koutselas, I. Preparation and structural study of binary phosphate glasses with high calcium and/or magnesium content. J. Non Cryst. Solids 2004, 347, 69–79. [CrossRef]

47. Brow, R.K.; Tallant, D.R.; Myers, S.T.; Phifer, C.C. The short-range structure of zinc polyphosphate glass. J. Non Cryst. Solids 1995, 191, 45–55. [CrossRef]

48. Sakka, S.; Miyaji, F.; Fukumi, K. Structure of binary K2O-TiO2 and Cs2O-TiO2 glasses. J. Non Cryst. Solids 1989, 112, 64–68. [CrossRef]

49. Mishra, A.; Rocherullé, J.; Massera, J. Ag-doped phosphate bioactive glasses: Thermal, structural and in-vitro dissolution properties. Biomed. Glasses 2016, 2, 38–48. [CrossRef]

50. Ciceo Lucacel, R.; Hulpus, A.O.; Simon, V.; Ardelean, I. Structural characterization of phosphate glasses doped with silver. J. Non Cryst. Solids 2009, 355, 425–429. [CrossRef]

51. Le, Q.H.; Calahoo, C.; Xia, Y.; Buchheim, J.; Bragatto, C.B.; Wondraczek, L. Optimization of electrical conductivity in the Na2O-P2O5-AlF3-SO3 glass system. J. Am. Ceram. Soc. 2020, 103, 4939–4956. [CrossRef]

52. Vogel, W. Classical Theories of Glass Structure. In Glass Chemistry; Vogel, W., Ed.; Springer: Berlin/Heidelberg, Germany, 1994; pp. 41–56.

53. Brow, R.K. Review: The structure of simple phosphate glasses. J. Non Cryst. Solids 2000, 263–264, 1–28. [CrossRef]

54. Nelson, B.N.; Exarhos, G.J. Vibrational spectroscopy of cation-site interactions in phosphate glasses. J. Chem. Phys. 1979, 71, 2739–2747. [CrossRef]

55. Rouse, G.B., Jr.; Miller, P.J.; Risen, W.M., Jr. Mixed alkali glass spectra and structure. J. Non Cryst. Solids 1978, 28, 193–207. [CrossRef]

56. Maeda, H.; Tamura, T.; Kasuga, T. Experimental and theoretical investigation of the structural role of titanium oxide in CaO- P2O5–TiO2 invert glass. J. Phys. Chem. B 2017, 121, 5433–5438. [CrossRef] [PubMed]

57. Silva, A.M.B.; Correia, R.N.; Oliveira, J.M.M.; Fernandes, M.H.V. Structural characterization of TiO2–P2O5–CaO glasses by spectroscopy. J. Eur. Ceram. Soc. 2010, 30, 1253–1258. [CrossRef]

58. Christie, J.K.; de Leeuw, N.H. Effect of strontium inclusion on the bioactivity of phosphate-based glasses. J. Mater. Sci. 2017, 52, 9014–9022. [CrossRef] [PubMed]

59. Li, Y.; Weng, W.; Santos, J.D.; Lopes, A.M. Structural studies of Na2O-TiO2-P2O5 system glasses investigated by FTIR and FT-Raman. Phys. Chem. Glasses Eur. J. Glass Sci. Technol. B 2008, 49, 41–45.

60. Nagarjuna, M.; Satyanarayana, T.; Gandhi, Y.; Veeraiah, N. Influence of Ag2O on some physical properties of LiF–TiO2–P2O5 glass system. J. Alloys Compd. 2009, 479, 549–556. [CrossRef]

61. Mandlule, A.; Döhler, F.; van Wüllen, L.; Kasuga, T.; Brauer, D.S. Changes in structure and thermal properties with phosphate content of ternary calcium sodium phosphate glasses. J. Non Cryst. Solids 2014, 392–393, 31–38. [CrossRef]

62. Dilmore, M.F.; Clark, D.E.; Hench, L.L. Chemical durability of Na2O-K2O-CaO-SiO2 glasses. J. Am. Ceram. Soc. 1978, 61, 439–443. [CrossRef]

63. Zhifang, W.; Nai, Z.; Bo, M.; Zhongxin, S. Study of the mixed alkali effect on chemical durability of alkali silicate glasses. J. Non Cryst. Solids 1986, 84, 468–476. [CrossRef]

64. Isard, J.O. The mixed alkali effect in glass. J. Non Cryst. Solids 1969, 1, 235–261. [CrossRef]

65. Day, D.E. Mixed alkali glasses—Their properties and uses. J. Non Cryst. Solids 1976, 21, 343–372. [CrossRef]

66. Swenson, J.; Adams, S. Mixed alkali effect in glasses. Phys. Rev. Lett. 2003, 90, 155507. [CrossRef] [PubMed]

67. Kishioka, A.; Haba, M.; Amagasa, M. Glass formation in multicomponent phosphate systems containing TiO2. Bull. Chem. Soc. Jpn. 1974, 47, 2493–2496. [CrossRef]

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る