リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Studies on Vasoconstriction and Cardiac Hypertrophy Controlled by α1A-Adrenergic Receptor」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Studies on Vasoconstriction and Cardiac Hypertrophy Controlled by α1A-Adrenergic Receptor

権, 哲源 Kwon, Chulwon 筑波大学

2020.07.22

概要

Cardiovascular diseases (CVDs) are the leading cause of death worldwide. In 2017, more than 17 million people died because of CVDs, accounting for 31% of all reported deaths (1). The World Health Organization (WHO) defines CVDs as a group of disorders of the heart and blood vessels, including coronary artery disease and heart failure. Many signaling molecules are involved in the pathogenesis of these diseases. Above all, G-protein coupled receptors (GPCRs) are key regulators of cardiovascular function. In this study, I have focused on the function of GPCRs in circulatory systems.

Blood vessels are tubular organs found throughout the body that play an essential role in circulatory systems by transporting blood and by regulating blood pressure. Since normal vasoconstriction helps transport blood, including dissolved oxygen, nutrients, and hormones into many tissues of the body in order to maintain whole-body homeostasis, impairment of blood vessels frequently causes organ dysfunctions and results in lethal conditions.

A recent study reported that several GPCRs are expressed in the cardiovascular system and play roles in tissue homeostasis. Although GPCRs generally bind to their corresponding ligands and transmit extracellular signals into the cell interior by interacting with G proteins (2), recent studies suggested that multiple GPCRs form functional dimers that contribute to the progression of CVDs such as pre-eclampsia and age-related hypertension (3- 6). However, there have been no reports concerning the relationship between GPCR dimerization and vascular contractility.

APJ, a GPCR specific for apelin, has been the subject of intensive research by our research group to date. We have investigated the roles played by APJ in the cardiovascular system and showed that APJ overexpression in cardiomyocytes causes phenotypes similar to those associated with peripartum cardiomyopathy (7). Although APJ in vascular endothelial cells (VECs) is known to promote NO synthesis and induce vasodilation in vessels (8,9), our endothelial dysfunction model mice exhibited apelin-induced vasoconstriction when treated with NOS inhibitors (10). These results suggest that APJ in vascular smooth muscle cells (VSMCs) may constrict vessels by apelin.

Therefore, we generated VSMC-specific APJ-overexpressing (SMAAPJ) mice to demonstrate the vasoconstrictive effect in vivo. SMA-APJ mice displayed vascular constriction following apelin administration ex vivo (Fig. I-1B). We therefore discovered that APJ acts as a vasoconstrictor in VSMCs. Moreover, we noticed that APJ may functionally interact with α1Aadrenergic receptor (α1A-AR) in VSMCs. Adrenergic receptors, including nine functional subtypes, are mainly expressed in tissues of the heart, lung, kidney, and vessels, and play various roles in each tissue. In particular, the α1-subtype plays a major role in regulating blood vessel diameter, i.e. vascular tone (11). In Chapter II, I will describe my findings concerning the functional interaction between APJ and α1A-AR in vasoconstriction, by measuring vascular contractility in response to ligands ex vivo in SMAAPJ/α1A-AR-KO mice that I generated.

The incidence of CVDs differs between men and women (12), especially since pregnancy sometimes becomes a risk factor for CVDs in women. The pregnancy-associated risk arises because of hemodynamic changes, including increases in heart rate and circulating blood volume. These alterations in normal pregnancy induce physiological cardiac hypertrophy (13,14), whereas hypertensive disorders of pregnancy (HDP) frequently develop into pathological cardiac hypertrophy, which is a hallmark of progression toward heart failure (15). Whereas there are only a few studies focused on cardiac hypertrophy under HDP conditions, our research group has previously generated pregnancy-associated hypertensive mice (PAH) that exhibit physiological cardiac hypertrophy during gestation (16) (Fig. I-2).

In summary, I have elucidated novel functions of α1A-AR in APJinduced vasoconstriction. These findings provide new insights into α1A-AR in relation to CVD.

参考文献

1. Collaborators, G. B. D. C. o. D. (2018) Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 392, 1736-1788

2. Rosenbaum, D. M., Rasmussen, S. G., and Kobilka, B. K. (2009) The structure and function of G-protein-coupled receptors. Nature 459, 356- 363

3. Siddiquee, K., Hampton, J., McAnally, D., May, L., and Smith, L. (2013) The apelin receptor inhibits the angiotensin II type 1 receptor via allosteric trans-inhibition. Br. J. Pharmacol., 168, 1104-1117

4. Forrester, S. J., Booz, G. W., Sigmund, C. D., Coffman, T. M., Kawai, T., Rizzo, V., Scalia, R., and Eguchi, S. (2018) Angiotensin II Signal Transduction: An Update on Mechanisms of Physiology and Pathophysiology. Physiol. Rev. 98, 1627-1738

5. Nishimura, A., Sunggip, C., Tozaki-Saitoh, H., Shimauchi, T.,NumagaTomita, T., Hirano, K., Ide, T., Boeynaems, J. M., Kurose, H., Tsuda, M., Robaye, B., Inoue, K., and Nishida, M. (2016) Purinergic P2Y6 receptors heterodimerize with angiotensin AT1 receptors to promote angiotensin II-induced hypertension. Sci. Signal., 9, ra7

6. AbdAlla, S., Lother, H., el Massiery, A., and Quitterer, U. (2001) Increased AT(1) receptor heterodimers in preeclampsia mediate enhanced angiotensin II responsiveness. Nat. Med. 7, 1003-1009

7. Murata, K., Ishida, J., Ishimaru, T., Mizukami, H., Hamada, J., Saito, C., and Fukamizu, A. (2016) Lactation Is a Risk Factor of Postpartum Heart Failure in Mice with Cardiomyocyte-specific Apelin Receptor (APJ) Overexpression. J. Biol. Chem. 291, 11241-11251

8. Ishida, J., Hashimoto, T., Hashimoto, Y., Nishiwaki, S., Iguchi, T., Harada, S., Sugaya, T., Matsuzaki, H., Yamamoto, R., Shiota, N., Okunishi, H., Kihara, M., Umemura, S., Sugiyama, F., Yagami, K., Kasuya, Y., Mochizuki, N., and Fukamizu, A. (2004) Regulatory roles for APJ, a seven-transmembrane receptor related to angiotensin-type 1 receptor in blood pressure in vivo. J. Biol. Chem. 279, 26274-26279

9. Tatemoto, K., Takayama, K., Zou, M. X., Kumaki, I., Zhang, W., Kumano, K., and Fujimiya, M. (2001) The novel peptide apelin lowers blood pressure via a nitric oxide-dependent mechanism. Regul. Pept. 99, 87-92

10. Nagano, K., Ishida, J., Unno, M., Matsukura, T., and Fukamizu, A. (2013) Apelin elevates blood pressure in ICR mice with L-NAME induced endothelial dysfunction. Mol. Med. Rep. 7, 1371-1375

11. Graham, R. M., Perez, D. M., Hwa, J., and Piascik, M. T. (1996) alpha 1-adrenergic receptor subtypes. Molecular structure, function, and signaling. Circ. Res. 78, 737-749

12. Mosca, L., Barrett-Connor, E., and Wenger, N. K. (2011) Sex/gender differences in cardiovascular disease prevention: what a difference a decade makes. Circulation 124, 2145-2154

13. Robson, S. C., Hunter, S., Boys, R. J., and Dunlop, W. (1989) Serial study of factors influencing changes in cardiac output during human pregnancy. Am. J. Physiol. 256, H1060-1065

14. Borges, V. T. M., Zanati, S. G., Peracoli, M. T. S., Poiati, J. R., RomaoVeiga, M., Peracoli, J. C., and Thilaganathan, B. (2018) Maternal left ventricular hypertrophy and diastolic dysfunction and brain natriuretic peptide concentration in early- and late-onset pre-eclampsia. Ultrasound. Obstet. Gynecol. 51, 519-523

15. Shimizu, I., and Minamino, T. (2016) Physiological and pathological cardiac hypertrophy. J. Mol. Cell. Cardiol. 97, 245-262

16. Takimoto, E., Ishida, J., Sugiyama, F., Horiguchi, H., Murakami, K., and Fukamizu, A. (1996) Hypertension induced in pregnant mice by placental renin and maternal angiotensinogen. Science 274, 995-998

17. Korner, P. I., Bobik, A., Angus, J. A., Adams, M. A., and Friberg, P. (1989) Resistance control in hypertension. J. Hypertens. Suppl. 7, S125- 134; discussion S135

18. Maguire, J. J., and Davenport, A. P. (2005) Regulation of vascular reactivity by established and emerging GPCRs. Trends. Pharmacol. Sci. 26, 448-454

19. Kidoya, H., and Takakura, N. (2012) Biology of the apelin-APJ axis in vascular formation. J. Biochem. 152, 125-131

20. Luo, X., Liu, J., Zhou, H., and Chen, L. (2018) Apelin/APJ system: A critical regulator of vascular smooth muscle cell. J. Cell. Physiol. 233, 5180-5188

21. Tatemoto, K., Hosoya, M., Habata, Y., Fujii, R., Kakegawa, T., Zou, M.X., Kawamata, Y., Fukusumi, S., Hinuma, S., Kitada, C., Kurokawa, T., Onda, H., and Fujino, M. (1998) Isolation and characterization of a novel endogenous peptide ligand for the human APJ receptor. Biochem. Biophys. Res. Commun. 251, 471-476

22. Sorli, S.C., van den Berghe, L., Masri, B., Knibiehler, B., and Audigier, Y. (2006) Therapeutic potential of interfering with apelin signalling. Drug Discov. Today 11, 1100-1106

23. Yu, Q.C., Hirst, C.E., Costa, M., Ng, E.S., Schiesser, J.V., Gertow, K., Stanley, E.G., and Elefanty, A.G. (2012) APELIN promotes hematopoiesis from human embryonic stem cells. Blood 119, 6243-6254

24. Vinel, C., Lukjanenko, L., Batut, A., Deleruyelle, S., Pradere, J.P., Le Gonidec, S., Dortignac, A., Geoffre, N., Pereira, O., Karaz, S., Lee, U., Camus, M., Chaoui, K., Mouisel, E., Bigot, A., Mouly, V., Vigneau, M., Pagano, A.F., Chopard, A., Pillard, F., Guyonnet, S., Cesari, M., BurletSchiltz, O., Pahor, M., Feige, J.N., Vellas, B., Valet, P., and Dray, C. (2018) The exerkine apelin reverses age-associated sarcopenia. Nat. Med. 24, 1360-1371

25. Kasai, A., Shintani, N., Oda, M., Kakuda, M., Hashimoto, H., Matsuda, T., Hinuma, S., and Baba, A. (2004) Apelin is a novel angiogenic factor in retinal endothelial cells. Biochem. Biophys. Res. Commun. 325, 395- 400

26. Kleinz, M.J., and Davenport, A.P. (2004) Immunocytochemical localization of the endogenous vasoactive peptide apelin to human vascular and endocardial endothelial cells. Regul. Pept. 118, 119-125

27. Kleinz, M.J., Skepper, J.N., and Davenport, A.P. (2005) Immunocytochemical localisation of the apelin receptor, APJ, to human cardiomyocytes, vascular smooth muscle and endothelial cells. Regul. Pept. 126, 233-240

28. Katugampola, S.D., Maguire, J.J., Matthewson, S.R., and Davenport, A.P. (2001) [(125)I]-(Pyr(1))Apelin-13 is a novel radioligand for localizing the APJ orphan receptor in human and rat tissues with evidence for a vasoconstrictor role in man. Br. J. Pharmacol. 132, 1255- 1260

29. Hashimoto, T., Kihara, M., Ishida, J., Imai, N., Yoshida, S., Toya, Y., Fukamizu, A., Kitamura, H., and Umemura, S. (2006) Apelin stimulates myosin light chain phosphorylation in vascular smooth muscle cells. Arterioscler. Thromb. Vasc. Biol. 26, 1267-1272

30. Kerppola, T. K. (2006) Design and implementation of bimolecular fluorescence complementation (BiFC) assays for the visualization of protein interactions in living cells. Nat. Protoc. 1, 1278-1286

31. Rokosh, D. G., and Simpson, P. C. (2002) Knockout of the alpha 1A/Cadrenergic receptor subtype: the alpha 1A/C is expressed in resistance arteries and is required to maintain arterial blood pressure. Proc. Natl. Acad. Sci. U. S. A. 99, 9474-9479

32. Nagano, K., Kwon, C., Ishida, J., Hashimoto, T., Kim, J. D., Kishikawa, N., Murao, M., Kimura, K., Kasuya, Y., Kimura, S., Chen, Y. C., Tsuchimochi, H., Shirai, M., Pearson, J. T., and Fukamizu, A. (2019) Cooperative action of APJ and alpha1A-adrenergic receptor in vascular smooth muscle cells induces vasoconstriction. J. Biochem. 166, 383-392

33. Gomes, I., Ayoub, M.A., Fujita, W., Jaeger, W.C., Pfleger, K.D., and Devi, L.A. (2016) G Protein-Coupled Receptor Heteromers. Annu. Rev. Pharmacol. Toxicol. 56, 403-425

34. Yeganeh-Hajahmadi, M., Najafipour, H., Farzaneh, F., Esmaeili-Mahani, S., and Joukar, S. (2018) Effect of apelin on cardiac contractility in acute reno-vascular hypertension: The role of apelin receptor and kappa opioid receptor heterodimerization. Iran. J. Basic Med. Sci. 21, 1305-1315

35. Rostamzadeh, F., Najafipour, H., Yeganeh-Hajahmadi, M., EsmaeiliMahani, S., Joukar, S., and Iranpour, M. (2017) Heterodimerization of apelin and opioid receptors and cardiac inotropic and lusitropic effects of apelin in 2K1C hypertension: Role of pERK1/2 and PKC. Life Sci. 191, 24-33

36. Bai, B., Cai, X., Jiang, Y., Karteris, E., and Chen, J. (2014) Heterodimerization of apelin receptor and neurotensin receptor 1 induces phosphorylation of ERK(1/2) and cell proliferation via Galphaqmediated mechanism. J. Cell. Mol. Med. 18, 2071-2081

37. Chun, H.J., Ali, Z.A., Kojima, Y., Kundu, R.K., Sheikh, A.Y., Agrawal, R., Zheng, L., Leeper, N.J., Pearl, N.E., Patterson, A.J., Anderson, J.P., Tsao, P.S., Lenardo, M.J., Ashley, E.A., and Quertermous, T. (2008) Apelin signaling antagonizes Ang II effects in mouse models of atherosclerosis. J. Clin. Inv. 118, 3343-3354

38. O'Carroll, A. M., Lolait, S. J., Harris, L. E., and Pope, G. R. (2013) The apelin receptor APJ: journey from an orphan to a multifaceted regulator of homeostasis. J. Endocrinol. 219, R13-35

55. Salazar, N. C., Chen, J., and Rockman, H. A. (2007) Cardiac GPCRs: GPCR signaling in healthy and failing hearts. Biochim. Biophys. Acta. 1768, 1006-1018

64. Sriram, K., and Insel, P. A. (2018) G Protein-Coupled Receptors as Targets for Approved Drugs: How Many Targets and How Many Drugs? Mol. Pharmacol. 93, 251-258

65. Pristipino, C., Beltrame, J. F., Finocchiaro, M. L., Hattori, R., Fujita, M., Mongiardo, R., Cianflone, D., Sanna, T., Sasayama, S., and Maseri, A. (2000) Major racial differences in coronary constrictor response between japanese and caucasians with recent myocardial infarction. Circulation 101, 1102-1108

参考文献をもっと見る