リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Retrieval of wind velocity in Venusian nightside mesosphere from CO2 absorption observed by mid-infrared heterodyne spectroscopy」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Retrieval of wind velocity in Venusian nightside mesosphere from CO2 absorption observed by mid-infrared heterodyne spectroscopy

Takami Kosuke 東北大学

2021.03.25

概要

This study presents a new attempt to retrieve Doppler wind velocity as well as temperature profile in the Venusian nightside from CO2 absorption spectra resolved by mid-infrared (MIR) heterodyne spectroscopy. The target sensitivity of the Doppler wind velocity retrieval aims to constrain the vertical transition of the wind regime at altitudes below 100 km where the retrograde super-rotational zonal (RSZ) wind changes to the subsolar point to the antisolar point (SS-AS) flow. We aimed to achieve the wind velocity and temperature retrieval requirements with an accuracy better than ±50 m/s and ±15 K. These requirements are based on the following considerations. For the wind velocity retrieval, a numerical model study showed that the transition between the RSZ wind and the SS-AS flow occurred at an altitude of ~90 km (Alexander, 1992). The wind profile in the dawn side was gradually varied from ~50 m/s westward at 80 km to ~50 m/s with eastward direction at 100 km. For observational identification of this transition, the accuracy of the wind velocity retrieval should be better than ±50 m/s. For the temperature retrieval, we considered the VEX SPICAV result which found the warm layer as a reference. This was 30–70 K higher than temperature obtained by previous measurements, and it was interpreted to be caused by the adiabatic heating during the air subsidence of the SS-AS flow (Bertaux et al. 2007; Gérard et al. 2017). For observational identification of such warming, the retrieved temperature accuracy should be better than ±15 K.

 A method which was supposed in Nakagawa et al. (2016) was used in this study for retrievals of temperature and wind velocity profiles from CO2 absorption spectra. They showed feasibility of retrieval for Venusian and Martian atmosphere, but do not refer to its verification. Based on the errors originating from uncertainties in a priori profiles, we estimated achievable sensitive altitude and retrieval accuracy using model spectra generated from various temperature and wind profiles with different noise levels. The evaluation suggested that temperature profiles can be retrieved at altitudes of 70 - 95 km range with vertical resolution of 5 km and retrieval accuracy of ±15 K. The assumed nominal noise level was 1.0 erg/s/cm2/sr/cm-1. For data with a higher signal-to-noise ratio (higher radiance and/or lower noise level), the retrieval accuracy can be improved and the upper boundary can be extended to 100 km. By contrast, the wind velocity profile was more difficult to obtain but still could be retrieved at an altitude of approximately 85 km with a vertical resolution of 10 km. For data with a higher signal-to-noise ratio, the retrieval accuracy became better, changing from ±50 m/s for noise levels of 1.5 erg/s/cm2/sr/cm-1 to ±25 m/s for noise levels of 0.5 erg/s/cm2/sr/cm-1. This result provides the first validation of a method for wind velocity retrieval in the Venusian mesosphere at altitudes of 85 - 95 km.

 We applied our retrieval method to Venus MIR spectra obtained by HIPWAC observations in May 2012 with data partially in common with the study by Stangier et al. (2015). We confirmed that our retrieved temperature profiles were in good agreement with the results of Stangier et al. (2015) obtained by different retrieval and also with radio occultation studies at coordinate observed point by Pätzold et al. (2007). The agreements supported validity of our method. Next, we retrieved the wind velocity at the altitudes of 80 - 95 km. The retrieved results at 33˚ S and 3 LT are 35 ± 28 m/s at 84 ± 6 km and 144 ± 70 m/s at the altitude of 94 ± 7 km, corresponding to the SS-AS flows at both altitudes. This result is unexpected because it is in the opposite direction of the RSZ wind. The retrieved results at 67˚ N and 0 LT were 66 ± 73 m/s at 80 ± 7 km and 112 ± 69 m/s at 90 ± 7 km, indicating the potential meridional circulation toward the equator at both altitudes. These velocities were consistent with the wind profile obtained by GCM of Gilli et al. (2017), but the retrieved wind at 33˚S was stronger. Our results suggested that the transition region between the RSZ wind and the SS-AS flow is found lower than 90 km which had been predicted to be the transition altitude.

 We conducted observation by our MIR heterodyne instrument MILAHI at the summit of Haleakala" on November 11 - 13, 19, and 20, 2018 targeting wind velocity at the evening terminator in the Venusian mesosphere. Observed points were equator (EQ) at LT of ~22:00 on November 11 - 13, 33˚N at LT of ~23:00 on 19, and 33˚S at LT of ~23:30 on 20. We could retrieve wind velocities from four spectra obtained on November 11, 12, 13, and 20. Retrieval showed wind velocities larger than 65 m/s from EQ11 and 150 m/s from EQ12, EQ13 and 33S20. Although mesospheric wind velocity has been expected to approach smaller than 50 m/s from the RSZ wind between 75 km and 95 km by numerical model of Alexander (1992), this observation suggested that there is much stronger wind velocity larger than 150 m/s. We cannot classify the retrieved wind as the RSZ wind or the SS-AS flow due to same wind direction of the dynamics on the dusk side. There is also the possibility of superposition of two dynamics.

 This study established the method of retrieving wind velocity and temperature in the Venusian mesosphere using MIR heterodyne spectroscopy by means of radiative transfer and Levenberg-Marquardt method. The retrieved altitude is the region where wind velocity along line of sight has not been observed by remote sensing so far due to its technical difficulty. Additionally, we studied mesospheric wind on both dawn side and dusk side. Retrieved wind velocities were strengthened toward a direction corresponding to the SS-AS flow on both sides. This study could conduct only one observation campaign at each side. We should conduct more MIR heterodyne observations in order to verify dynamics in the mesosphere and investigate temporal and spatial variations. Our advantage is to be able to observe the mesospheric wind continuously by dedicated telescope: Tohoku university 60-cm telescope. The investigations give us important information for comprehensively understanding Venus upper atmospheric structure.

この論文で使われている画像

参考文献

Alexander MJ (1992) A mechanism for the Venus thermospheric superrotation. Geophys. Res. Lett. 19:2207-2210. doi:10.1029/92GL02110

Baars J (1973) The measurement of large antennas with cosmic radio sources. IEEE Transactions on Antennas and Propagation 21:4:pp461-474. doi: 10.1109/TAP.1973.1140521

Baron, P, Mendrok J, Kasai Y, Ochiai S, Seta T, Sagi K, Suzuki K, Sagawa H, Urban J (2008) AMATERASU: Model for Atmospheric TeraHertz Radiation Analysis and Simulation, J. National Inst. Info. Comm. Tech., 55(1):109-121. http://www.nict.go.jp/publication/shuppan/kihou-journal/journal-vol55no1/07-04.pdf

Bertaux JL, Vandaele AC, Korablev O, Villard E, Fedorova A, Fussen D, Quémerais E, Belyaev D, Mahieux A, Montmessin F, Muller C, Neefs E, Nevejans D, Wilquet V, Dubois JP, Hauchecorne A, Stepanov A, Vinogradov I, Rodin AV, the SPICAV/SOIR team (2007) A warm layer in Venus’ cryosphere and high-altitude measurements of HF, HCl, H2O and HDO. Nature 450:646-649. doi:10.1038/nature05974

Bougher SW, Brecht AS, Schulte R, Fischer J, Parkinson CD, Mahieux A, Wilquet V, Vandaele A (2015) Upper atmosphere temperature structure at the Venusian terminators: A comparison of SOIR and VTGCM results. Planet. Space Sci. 113:336-346. doi:0.1016/j.pss.2015.01.012

Clancy RT, Sandor BJ, Moriarty-Schieven GH (2003) Observational definition of the Venus mesopause: vertical structure, diurnal variation, and temporal instability. Icarus, 161:1-16. doi:10.1016/S0019-1035(02)00022-2

Clancy RT, Sandor BJ, Moriarty-Schieven GH (2008)Venus upper atmospheric CO, temperature, and winds across the afternoon/evening terminator from June 2007 JCMT sub-millimeter line observations. Planet. Space Sci. 56:1344-1354. doi:10.1016/j.pss.2008.05.007

Clancy RT, Sandor BJ, Moriarty-Schieven G (2012a) Thermal structure and CO distribution for the Venus mesosphere/lower thermosphere: 2001-2009 inferior conjunction sub-millimeter CO absorption line observations. Icarus, 217:779-793. doi:10.1016/j.icarus.2011.05.032

Clancy RT, Sandor BJ, Moriarty-Schieven G (2012b) Circulation of the Venus upper mesosphere/lower thermosphere: Doppler wind measurements from 2001-2009 inferior conjunction, sub-millimeter CO absorption line observations. Icarus 217:794- 812. doi:10.1016/j.icarus.2011.05.021

Clancy RT, Sandor BJ, Hoge J (2015) Doppler winds mapped around the lower thermospheric terminator of Venus: 2012 solar transit observations from the James Clerk Maxwell Telescope. Icarus 254:233-258. doi:10.1016/j.icarus.2015.03.031

Deming D, Mumma MJ (1983) Modeling of the lO-µm Natural Laser Emission from the Mesospheres of Mars and Venus. Icarus 55:356-368. doi:10.1016/0019- 1035(83)90108-2

Eymet V, Fournier R, Dufresne JL, Lebonnois S, Hourdin F, Bullock MA (2009). Net exchange parameterization of thermal infrared radiative transfer in Venus' atmosphere. J. Geophys. Res. 114:E11008. doi:10.1029/2008JE003276

Evans AN (2000) Glacier surface motion computation from digital image sequences, IEEE. T. Geosci. Remote. 38:1064–1072. doi:10.1109/36.841985

Fukunishi H, Okano S, Taguchi M, Ohnuma T (1990) Laser heterodyne spectro- meter using a liquid nitrogen cooled tunable diode laser for remote measurements of atmospheric O3 and N2O. Appl. Opt. 29(18):2722. doi:10.1364/AO.29.002722

Gérard JC, Bougher SW, Lopez-Valverde MA, Patzold M, Drossart P, Piccioni G (2017) Aeronomy of the Venus upper atmosphere, Space Sci. Rev. 212, 1617-1683. doi:10.1007/s11214-017-0422-0

Gilli G, Lebonnois S, González-Galindo F, López-Valverde MA, Stolzenbach A, Lefèvre F, Chaufray JY, Lott F (2017) Thermal structure of the upper atmosphere of Venus simulated by a ground-to-thermosphere GCM. Icarus 281:55-72. doi:10.1016/j.icarus.2016.09.016

Goldstein JJ, Mumma MJ, Kostiuk T, Deming D, Espenak F, Zipoy D (1991) Absolute Wind Velocities in the Lower Thermosphere of Venus Using Infrared Heterodyne Spectroscopy. Icarus 94:45–63. doi:10.1016/0019-1035(91)90140-O

Gorinov DA, Khatuntsev IV, Zasova LV, Turin AV, Piccioni G (2018) Circulation of Venusian atmosphere at 90-110 km based on apparent motions of the O2 1.27 µm nightglow from VIRTIS-M (Venus Express) data. Geophys. Res. Lett. 45:2554-2562. doi:10.1002/2017GL076380

Hedin AE, Niemann HB, Kasprzak WT, Seiff A (1983) Global empirical model of the venus thermosphere. J. Geophys. Res. 88:73–83. doi:10.1029/JA088iA01p00073

Horinouchi T, Kouyama T, Lee YJ, Murakami S, Ogohara K, Takagi M, Imamura T, Nakajima K, Peralta J, Yamazaki A, Yamada M, Watanabe S (2018) Mean winds at the cloud top of Venus obtained from two-wavelength UV imaging by Akatsuki. Earth Planets Space 70:10. doi:10.1186/s40623-017-0775-3

Horinouchi T, Hayashi Y, Watanabe S, Yamada M, Yamazaki A, Kouyama T, Taguchi M, Fukuhara T, Takagi M, Ogohara K, Murakami S, Peralta J, Limaye SS, Imamura T, Nakamura M, Sato TM, Satoh T (2020) How waves and turbulence maintain the super-rotation of Venus’ atmosphere. Science 368,6489:405-409. doi:10.1126/science.aaz4439

Hoshino N, Fujiwara H, Takagi M, Kasaba Y (2013) Effects of gravity waves on the day- night difference of the general circulation in the Venusian lower thermosphere. J. Geophys. Res. 118:1-12. doi:10.1002/jgre.20154. Imamura T, Ando H, Tellmann S, Pätzold M, Häusler B, Yamazaki A, Sato TM, Noguchi K, Futaana Y, Oschlisniok J, Limaye S, Choudhary RK, Murata Y, Takeuchi H, Hirose C, Ichikawa T, Toda T, Tomiki A, Abe T, Yamamoto Z, Noda H, Iwata T, Murakami S, Satoh T, Fukuhara T, Ogohara K, Sugiyama K, Kashimura H, Ohtsuki S, Takagi S, Yamamoto Y, Hirata N, Hashimoto GL, Yamada M, Suzuki M, Ishii N, Hayashiyama T, Lee YJ, Nakamura M (2017) Initial performance of the radio occultation experiment in the Venus orbiter mission Akatsuki. Earth Planets Space, 69:137, doi:10.1186/s40623-017-0722-3

Hueso R, Sanchez-Lavega A, Piccioni G, Drossart P, Gerard JC, Khatuntsev I, Zasova L, Migliorini A (2008) Morphology and dynamics of Venus oxygen airglow from Venus Express/Visible and Infrared Thermal Imaging Spectrometer observations. J. Geophys. Res. 113. doi:10.1029/ 2008JE003081. doi:10.1029/2008JE003081

Kasai Y, Sagawa H, Kuroda T, Manabe T, Ochiai S, Kikuchi K, Nishibori T, Baron P, Mendrok J, Hartogh P, Murtagh D, Urban J, von Schéele F, Frisk U (2012) Overview of the Martian atmospheric submillimetre sounder FIRE. Planet. Space Sci. 63-64:62– 82 doi:10.1016/j.pss.2011.10.013

Khatuntsev IV, Patsaeva MV, Ignatiev NI, Titov DV, Markiewicz WJ, Limaye SS, Turin AV (2014) Variations of the zonal flow at Venus cloud tops from VMC/VEX UV images in period from 2006 to 2014. In: Abstracts of European Planetary Science Congress 2014. https://meetingorganizer.copernicus.org/EPSC2014/EPSC2014-177.pdf

Kostiuk T, Mumma MJ (1983) Remote sensing by IR heterodyne spectroscopy. Appl Opt 1:22(17):2644. doi: 10.1364/ao.22.002644.

Kostiuk T (1994) PHYSICS AND CHEMISTRY OF UPPER ATMOSPHERES OF PLANETS FROM INFRARED OBSERVATIONS. Infrared Phys Terhnol 35:No.2/3:243-266. doi:10.1016/1350-4495(94)90084-1

Kostiuk T, Livengood TA, Hewagama T, Sonnabend G, Fast KE, Murakawa K, Tokunaga AT, Annen J, Buhl D, Schmülling F (2005) Titan's stratospheric zonal wind, temperature, and ethane abundance a year prior to Huygens insertion. Geophys. Res. Lett. 32:L22205. doi:10.1029/2005GL023897

Kostiuk T, Hewagama T, Fast KE, Livengood TA, Annen J, Buhl D,Sonnabend G, Schmülling F, Delgado JD,2,Achterberg R (2010) High spectral resolution infrared studies of Titan: Winds, temperature, and composition. Planet. Space Sci. 58 (2010) 1715–1723. doi:10.1016/j.pss.2010.08.004

Kouyama T, Imamura T, Nakamura M, Satoh T, Futaana Y (2012) Horizontal structure of planetary-scale waves at the cloud top of Venus deduced from Galileo SSI images with an improved cloud-tracking technique. Planet. Space Sci. 60:207-216. doi:10.1016/j.pss.2011.08.008

Kouyama T, Imamura T, Nakamura M, Satoh T, Futaana Y (2013) Long-term variation in the cloud-tracked zonal velocities at the cloud top of Venus deduced from Venus Express VMC images. J. Geophys. Res. Planets 118:37-46. doi:10.1029/2011JE004013

Krause P, Sornig M, Wischnewski C, Herrmann M, Stangier T, Sonnabend G, Kostiuk T, Livengood T (2015) Long-term variation of temperature and dynamic at the morning terminator in venus upper atmosphere from ground-based infrared heterodyne spectroscopy. European Planetary Science Congress 2015. EPSC2015–544.

Krause P, Sornig M, Wischnewski C, Kostiuk T, Livengood TA, Herrmann M, Sonnabend G, Stangier T, Wiegand M, Pätzold M, Mahieux A, Vandaele AC, Piccialli A, Montmessin F (2018) Long term evolution of temperature in the venus upper atmosphere at the evening and morning terminators. Icarus 299:370-385. doi:10.1016/j.icarus.2017.07.030

Kuntz M (1997) A new implementation of the Humlicek algorithm for the Voigt profile function. JQSRT 57:819–24. doi:10.1016/S0022-4073(96)00162-8

Lee YJ, Yamazaki A, Imamura T, Yamada M, Watanabe S, Sato TM, Ogohara K, Hashimoto GL, Murakami S (2017) Scattering properties of the Venusian clouds observed by UV Imager on board Akatsuki. The Astronomical Journal. 154:44. doi:10.3847/1538-3881/aa78a5

Lellouch E, Paubert G, Moreno R, Moullet A (2008) Monitoring Venus’ mesospheric winds in support of Venus Express: IRAM 30-m and APEX observations. Planet. Space Sci. 56, 1355-1367. doi:10.1016/j.pss.2008.06.010

Levenberg K (1944) A method for the solution of certain non-linear problems in least squares. Quart. Appl. Math. 2:164-168. doi:10.1090/qam/10666

Livengood TA, Kostuik T, Espenak F, Goldstein JJ (1993) Temperature and abundances in the Jovian auroral stratosphere: 1. Ethane as a probe of the millibar region. J. Geopshy. Res. 98 (E10)18813–18822. doi:10.1029/93JE01043

López-Valverdea MA, Sonnabend G, Sornig M, Kroet P (2011) Modelling the atmospheric CO2 10-µm non-thermal emission in Mars and Venus at high spectral resolution. Planet. Space Sci. 59:999-1009. doi:10.1016/j.pss.2010.11.011

Mahieux A, Vandaele AC, Bougher SW, Drummond R, Robert S, Wilquet V, Chamberlain S, Piccialli A, Montmessin F, Tellmann S, Pätzold M, Häusler B, Bertaux JL (2015) Update of the venus density and temperature profiles at high altitude measured by SOIR on board venus express. Planet. Space Sci. 113:309–320. doi:10.1016/j.pss.2015.02.002.

Marquardt W (1963) An Algorithm for Least-Squares Estimation of Nonlinear Parameters. Journal of the Society for Industrial and Applied Mathematics. 11(2): 431–441. doi:10.1137/0111030

Moullet A, Lellouch E, Moreno R, Gurwell M, Sagawa H (2012) Wind mapping in Venus’ upper mesosphere with the IRAM-Plateau de Bure interferometer. Astron. Astrophys. 546:A102. doi:10.1051/0004-6361/201118451

Nakagawa H, Hoshino N, Sornig M, Kasaba Y, Sonnabend G, Stupar D, Aoki S, Murata I (2013) Comparison of general circulation model atmospheric wave simulations with wind observations of Venusian mesosphere. Icarus 225:840-849. doi:10.1016/j.icarus.2013.02.029

Nakagawa H, Aoki S, Sagawa H, Kasaba Y, Murata I, Sonnabend G, Sornig M, Okano S, Kuhn JR, Ritter JM, Kagitani M, Sakanoi T, Taguchi M, Takami K (2016) IR heterodyne spectrometer MILAHI for continuous monitoring observatory of Martian and Venusian atmospheres at Mt. Haleakala, Hawaii. Planet. Space Sci. 126:34-48. doi:10.1016/j.pss.2016.04.002.

Ogohara K, Kouyama T, Yamamoto H, Sato N, Takagi M, Imamura T (2012) Automated cloud tracking system for the Akatsuki Venus Climate Orbiter data. Icarus 217:661- 668. doi:10.1016/j.icarus.2011.05.017

Okano S, Taguchi M, Fukunishi H (1989) Stratospheric ozone measurements with a tunable diode laser heterodyne spectrometer. Geophys. Res. Lett. 16:551–554. doi:10.1029/GL016i006p00551

Pätzold M, Häusler B, Bird MK, Tellmann S, Mattei R, Asmar SW, Dehant V, Eidel W, Imamura T, Simpson RA, Tyler GL (2007) The structure of Venus’ middle atmosphere and ionosphere. nature 450:657-660. doi:10.1038/nature06239

Peralta J, Hueso R, Sánchez-Lavega A, Lee YJ, García-Muñoz A, Kouyama T, Sagawa H, Sato TM, Piccioni G, Tellmann S, Imamura T, Satoh T (2017) Stationary waves and slowly moving features in the night upper clouds of Venus. Nat Astron 1:0187. doi:10.1038/s41550-017-0187

Piccialli A, Montmessin F, Belyaev D, Mahieux A, Fedorova A, Marcq E, Bertaux JL, Tellmann S, Vandaele AC, Korablev O (2015) Thermal structure of Venus nightside upper atmosphere measured by stellar occultations with SPICAV/Venus Express. Planet. Space Sci. 113-114:321–335. doi:10.1016/j.pss.2014.12.009

Rodgers CD. Inverse methods for atmospheric sounding—theory and practise, vol. 2 of series on atmospheric, oceanic and planetary physics. Singapore: World Scientific, 2000. ISBN-981-02-2740-X.

Rothman LS, Gordon E, Babikov Y, Barbe A, Chris Benner D, Bernath PF, Birk M, Bizzocchi L, Boudon V, Brown LR, Campargue A, Chance K, Cohen EA, Coudert LH, Devi VM, Drouin BJ, Fayt A, Flaud JM, Gamache RR, Harrison JJ, Hartmann JM, Hill C, Hodges JT, Jacquemart D, Jolly A, Lamouroux J, Le Roy RJ, Li G, Long DA, Lyulin OM, Mackie CJ, Massie ST, Mikhailenko S, Müller HSP, Naumenko OV, Nikitin AV, Orphal J, Perevalov V, Perrin A, Polovtseva ER, Richard C, Smith MAH, Starikova E, Sung K, Tashkun S, Tennyson J, Toon GC. Tyuterev VlG, Wagner G (2013) The HITRAN2012 molecular spectroscopic database, J. Quant. Spectr. Rad. Transf. 130, 4-50. doi:10.1016/j.jqsrt.2013.07.002

Schmülling F, Kostiuk T, Buhl D, Rozmarynowski P, Segal K, Livengood T, Hewagama T (1999) A new Infrared Heterodyne Instrument for measurements of Planetary Wind and Composition. In: AAS/ Division for Planetary Sciences Meeting Abstracts 31

Seiff A, Kirk DB, Young RE, Blanchard RC, Findlay JT, Kelly GM, Sommer SC (1980) Measurements of thermal structure and thermal contrasts in the atmosphere of Venus and related dynamical observations - Results from the four Pioneer Venus probes. J. Geophys. Res. 85:7903-7933. doi:10.1029/JA085iA13p07903

Seiff A, Kirk DB (1982) Structure of the Venus mesosphere and lower thermosphere from measurements during entry of the pioneer Venus probes. Icarus 49:49-70. doi:10.1016/0019-1035(82)90056-2

Seiff A, Schofield JT, Kliore AJ, Taylor FW, Limaye SS, Revercomb HE, Sromovsky LA, Kerzhanovich VV, Moroz VI, Marov M Ya (1985) Models of the structure of the atmosphere of Venus from the surface to 100 kilometers altitude. Adv. Space Res. 5:3-58. doi:10.1016/0273-1177(85)90197-8

Sonnabend G, Sornig M, Krötz PJ, Schieder RT, Fast KE (2006) High spatial resolution mapping of Mars mesospheric zonal winds by infrared heterodyne spectroscopy of CO2. Geophys. Res. Lett. 33:L18201. doi:10.1029/2006GL026900

Sonnabend G, Sornig M, Krotz P, Stupar D, Schieder R (2008a) Ultra high spectral resolution observations of planetary atmospheres using the cologne tuneable heterodyne infrared spectrometer. J. Quant. Spectrosc. Radiat. Transf. 109:6:1016– 1029. doi:10.1016/j.jqsrt.2007.12.003

Sonnabend G, Sornig M, Schieder R, Kostiuk T, Delgado J (2008b) Temperatures in Venus upper atmosphere from mid-infrared heterodyne spectroscopy of CO2 around 10 µm wavelength. Planet. Space Sci. 56: 1407-1413. doi:10.1016/j.pss.2008.05.008

Sonnabend G, Kroetz P, Sornig M, Stupar D (2010) Direct observations of Venus upper mesospheric temperatures from ground based spectroscopy of CO2. Geophys. Res. Lett. 37:L11102. doi:10.1029/2010GL043335

Sonnabend G, Sornig M, Kroetz P, Stupar D (2012a) Mars mesospheric zonal wind around northern spring equinox from infrared heterodyne observations of CO2. Icarus 217:315-321. doi.org/10.1016/j.icarus.2011.11.009

Sonnabend G, Krötz P, Schmülling F, Kostiuk T, Goldstein J, Sornig M, Stupar D, Livengood T, Hewagama T, Fast K, Mahieux A (2012b) Thermospheric/mesospheric temperatures on Venus: Results from ground-based high-resolution spectroscopy of CO2 in 1990/1991 and comparison to results from 2009 and between other techniques. Icarus 217:856-862. doi:10.1016/j.icarus.2011.07.015

Sornig M, Livengood T, Sonnabend G, Kroetz P, Stupar D, Kostiuk T, Schieder R (2008) Venus upper atmosphere winds from ground-based heterodyne spectroscopy of CO2 at 10 µm wavelength. Planet. Space Sci. 56:1399-1406. doi:10.1016/j.pss.2008.05.006

Sornig M, Livengood TA, Sonnabend G, Stupar D, Kroetz P (2012) Direct wind measurements from November 2007 in Venus' upper atmosphere using ground-based heterodyne spectroscopy of CO2 at 10 µm wavelength. Icarus 217:863-874. doi:10.1016/j.icarus.2011.03.019

Sornig M, Sonnabend G, Stupar D, Kroetz P, Nakagawa H, Mueller-Wodarg I (2013) Venus' upper atmospheric dynamical structure from ground-based observations shortly before and after Venus' inferior conjunction 2009. Icarus 225:828-839. doi:10.1016/j.icarus.2012.12.005

Stangier T (2015) Atmospheric thermal properties of Venus and Mars. Investigation of CO2 absorption lines using ground-based mid-infrared heterodyne spectroscopy. PhD thesis, Univ. Köln. https://kups.ub.uni-koeln.de/5972/

Stangier T, Hewagama T, Sornig M, Sonnabend G, Kostiuk T, Herrmann M, Livengood T (2015) Thermal structure of Venus’ nightside mesosphere as observed by infrared heterodyne spectroscopy at 10 µm. Planet. Space Sci. 113:359-368. doi:10.1016/j.pss.2015.01.021

Taguchi M, Okano S, Fukunishi H, Sasano Y (1990) Comparison of ozone profiles from ground-based laser heterodyne spectrometer and ozonesonde measurements. Geophys. Res. Lett. 17(12):2349–2352. doi:10.1029/GL017i013p02349

Urban J, Baron P, Lautié N, Schneider N, Dassas K, Ricaud P, De La Noë J (2004) Moliere (v 5): a versatile forward- and inversion model for the millimeter and sub- millimeter wavelength range. JQSRT, 83:529-554. doi:10.1016/S0022- 4073(03)00104-3

Van Vleck JH, Weisskopf VF (1945) On the shape of collision-broadened lines. Rev. Mod. Phys. 17:227. doi:10.1103/RevModPhys.17.227

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る