リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「A high-fat diet exacerbates the Alzheimer's disease pathology in the hippocampus of the AppNL−F/NL−F knock-in mouse model」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

A high-fat diet exacerbates the Alzheimer's disease pathology in the hippocampus of the AppNL−F/NL−F knock-in mouse model

Mazzei, Guianfranco Ikegami, Ryohei イケガミ, リョウヘイ Abolhassani, Nona Haruyama, Naoki ハルヤマ, ナオキ Sakumi, Kunihiko 作見, 邦彦 サクミ, クニヒコ Saito, Takashi 斉藤, 貴志 サイトウ, タカシ Saido, C. Takaomi 西道, C. 隆臣 サイドウ, C. タカオミ Nakabeppu, Yusaku 中別府, 雄作 ナカベップ, ユウサク 九州大学

2021.07.10

概要

Insulin resistance and diabetes mellitus are major risk factors for Alzheimer's disease (AD), and studies with transgenic mouse models of AD have provided supportive evidence with some controversies.

この論文で使われている画像

参考文献

Arvanitakis, Z., Wilson, R. S., Bienias, J. L., Evans, D. A., & Bennett, D. A.

(2004). Diabetes mellitus and risk of alzheimer disease and decline

in cognitive function. Archives of Neurology, 61(5), 661–­666. https://

doi.org/10.1001/archn​eur.61.5.661

Ba, X., & Boldogh, I. (2018). 8-­Oxoguanine DNA glycosylase 1: Beyond

repair of the oxidatively modified base lesions. Redox Biology, 14,

669–­678. https://doi.org/10.1016/j.redox.2017.11.008

Barron, A. M., Rosario, E. R., Elteriefi, R., & Pike, C. J. (2013). Sex-­specific

effects of high fat diet on indices of metabolic syndrome in 3xTg-­AD

mice: Implications for Alzheimer's disease. PLoS ONE, 8, e78554.

https://doi.org/10.1371/journ​al.pone.0078554

Bateman, R. J., Xiong, C., Benzinger, T. L. S., Fagan, A. M., Goate, A., Fox,

N. C., Marcus, D. S., Cairns, N. J., Xie, X., Blazey, T. M., Holtzman,

D. M., Santacruz, A., Buckles, V., Oliver, A., Moulder, K., Aisen, P. S.,

Ghetti, B., Klunk, W. E., McDade, E., … Morris, J. C. (2012). Clinical

and biomarker changes in dominantly inherited Alzheimer's disease. New England Journal of Medicine, 367(9), 795–­8 04. https://doi.

org/10.1056/NEJMo​a1202753

Bracko, O., Vinarcsik, L. K., Cruz Hernández, J. C., Ruiz-­Uribe, N. E.,

Haft-­Javaherian, M., Falkenhain, K., Ramanauskaite, E. M., Ali, M.,

Mohapatra, A., Swallow, M. A., Njiru, B. N., Muse, V., Michelucci,

P. E., Nishimura, N., & Schaffer, C. B. (2020). High fat diet worsens Alzheimer's disease-­related behavioral abnormalities and neuropathology in APP/PS1 mice, but not by synergistically decreasing cerebral blood flow. Scientific Reports, 10, 9884. https://doi.

org/10.1038/s4159​8-­020-­65908​-­y

Buxbaum, J. N., Ye, Z., Reixach, N., Friske, L., Levy, C., Das, P., Golde, T.,

Masliah, E., Roberts, A. R., & Bartfai, T. (2008). Transthyretin protects Alzheimer's mice from the behavioral and biochemical effects

of A toxicity. Proceedings of the National Academy of Sciences, 105(7),

2681–­2686. https://doi.org/10.1073/pnas.07121​97105

Castillo, E., Leon, J., Mazzei, G., Abolhassani, N., Haruyama, N., Saito, T.,

Saido, T., Hokama, M., Iwaki, T., Ohara, T., Ninomiya, T., Kiyohara,

Y., Sakumi, K., LaFerla, F. M., & Nakabeppu, Y. (2017). Comparative

profiling of cortical gene expression in Alzheimer's disease patients and mouse models demonstrates a link between amyloidosis and neuroinflammation. Scientific Reports, 7, 17762. https://doi.

org/10.1038/s4159​8-­017-­17999​-­3

Choi, S. H., Leight, S. N., Lee, V. M. Y., Li, T., Wong, P. C., Johnson, J.

A., Saraiva, M. J., & Sisodia, S. S. (2007). Accelerated A deposition in APPswe/PS1 E9 mice with hemizygous deletions of TTR

(Transthyretin). Journal of Neuroscience, 27, 7006–­7010. https://doi.

org/10.1523/JNEUR​OSCI.1919-­07.2007

Copps, K. D., & White, M. F. (2012). Regulation of insulin sensitivity by

serine/threonine phosphorylation of insulin receptor substrate

proteins IRS1 and IRS2. Diabetologia, 55, 2565–­2582. https://doi.

org/10.1007/s0012​5-­012-­2644-­8

Cordner, Z. A., & Tamashiro, K. L. K. (2015). Effects of high-­fat diet exposure on learning & memory. Physiology & Behavior, 152, 363–­371.

https://doi.org/10.1016/j.physb​eh.2015.06.008

de la Monte, S. M. (2014). Type 3 diabetes is sporadic Alzheimer‫׳‬s disease: Mini-­review. European Neuropsychopharmacology, 24, 1954–­

1960. https://doi.org/10.1016/j.euron​euro.2014.06.008

Elhaik Goldman, S., Goez, D., Last, D., Naor, S., Liraz Zaltsman, S., Sharvit-­

Ginon, I., Atrakchi-­Baranes, D., Shemesh, C., Twitto-­Greenberg,

R., Tsach, S., Lotan, R., Leikin-­Frenkel, A., Shish, A., Mardor, Y.,

Schnaider Beeri, M., & Cooper, I. (2018). High-­fat diet protects the

blood-­brain barrier in an Alzheimer's disease mouse model. Aging

Cell, 17, e12818. https://doi.org/10.1111/acel.12818

Ettcheto, M., Petrov, D., Pedrós, I., Alva, N., Carbonell, T., Beas-­Zarate,

C., Pallas, M., Auladell, C., Folch, J., & Camins, A. (2016). Evaluation

of neuropathological effects of a high-­fat diet in a presymptomatic

Alzheimer's disease stage in APP/PS1 mice. Journal of Alzheimer's

Disease, 54, 233–­251. https://doi.org/10.3233/JAD-­160150

Gale, S. A., Acar, D., & Daffner, K. R. (2018). Dementia. American

Journal of Medicine, 131(10), 1161–­1169. https://doi.org/10.1016/j.

amjmed.2018.01.022

Ghadami, S. A., Chia, S., Ruggeri, F. S., Meisl, G., Bemporad, F., Habchi,

J., Cascella, R., Dobson, C. M., Vendruscolo, M., Knowles, T. P. J., &

Chiti, F. (2020). Transthyretin inhibits primary and secondary nucleations of amyloid-­β peptide aggregation and reduces the toxicity of its oligomers. Biomacromolecules, 21, 1112–­1125. https://doi.

org/10.1021/acs.biomac.9b01475

Haass, C., & Selkoe, D. J. (2007). Soluble protein oligomers in neurodegeneration: Lessons from the Alzheimer's amyloid β-­peptide. Nature

Reviews Molecular Cell Biology, 8, 101–­112. https://doi.org/10.1038/

nrm2101

Haruyama, N., Sakumi, K., Katogi, A., Tsuchimoto, D., De Luca, G.,

Bignami, M., & Nakabeppu, Y. (2019). 8-­Oxoguanine accumulation

in aged female brain impairs neurogenesis in the dentate gyrus and

major island of Calleja, causing sexually dimorphic phenotypes.

Progress in Neurobiology, 180, 101613. https://doi.org/10.1016/j.

pneur​obio.2019.04.002

16 of 17 Heydemann, A. (2016). An overview of murine high fat diet as a model

for type 2 diabetes mellitus. Journal of Diabetes Research, 2016,

2902351. https://doi.org/10.1155/2016/2902351

Kanoski, S. E., & Davidson, T. L. (2011). Western diet, cognitive impairment and hippocampal function. Physiology & Behavior, 103, 59–­68.

https://doi.org/10.1016/j.physb​eh.2010.12.003

Kawarabayashi, T., Younkin, L. H., Saido, T. C., Shoji, M., Ashe, K. H., &

Younkin, S. G. (2001). Age-­dependent changes in brain, CSF, and

plasma amyloid β protein in the Tg2576 transgenic mouse model of

Alzheimer's disease. Journal of Neuroscience, 21, 372–­381. https://

doi.org/10.1523/jneur​osci.21-­02-­0 0372.2001

Kayed, R., & Lasagna-­Reeves, C. A. (2013). Molecular mechanisms of amyloid oligomers toxicity. Journal of Alzheimer's Disease, 33, S67–­S78.

https://doi.org/10.3233/JAD-­2012-­129001

Knight, E. M., Martins, I. V. A., Gümüsgöz, S., Allan, S. M., & Lawrence,

C. B. (2014). High-­fat diet-­induced memory impairment in triple-­

transgenic Alzheimer's disease (3xTgAD) mice isindependent of

changes in amyloid and tau pathology. Neurobiology of Aging, 35,

1821–­1832. https://doi.org/10.1016/j.neuro​biola​ging.2014.02.010

Li, X., & Buxbaum, J. N. (2011). Transthyretin and the brain re-­visited:

Is neuronal synthesis of transthyretin protective in Alzheimer's

disease? Molecular Neurodegeneration, 6, 79. https://doi.

org/10.1186/1750-­1326-­6-­79

Masuda, A., Kobayashi, Y., Kogo, N., Saito, T., Saido, T. C., & Itohara, S.

(2016). Cognitive deficits in single App knock-­in mouse models.

Neurobiology of Learning and Memory, 135, 73–­

82. https://doi.

org/10.1016/j.nlm.2016.07.001

Matsuzaki, T., Sasaki, K., Tanizaki, Y., Hata, J., Fujimi, K., Matsui, Y.,

Sekita, A., Suzuki, S. O., Kanba, S., Kiyohara, Y., & Iwaki, T. (2010).

Insulin resistance is associated with the pathology of Alzheimer

disease: The Hisayama study. Neurology, 75, 764–­770. https://doi.

org/10.1212/WNL.0b013​e3181​eee25f

Nakabeppu, Y. (2019). Molecular pathophysiology of insulin depletion, mitochondrial dysfunction, and oxidative stress in

Alzheimer's disease brain. In Y. Nakabeppu & T. Ninomiya (Eds.),

Diabetes Mellitus. Advances in Experimental Medicine and Biology

(Vol. 1128, pp. 27–­

4 4). Springer New York LLC. https://doi.

org/10.1007/978-­981-­13-­3540-­2_3

Neves, G., Cooke, S. F., & Bliss, T. V. P. (2008). Synaptic plasticity, memory and the hippocampus: a neural network approach to causality.

Nature Reviews Neuroscience, 9, 65–­75. https://doi.org/10.1038/

nrn2303

Ninomiya, T. (2014). Diabetes mellitus and dementia. Current Diabetes

Reports, 14, 487. https://doi.org/10.1007/s1189​2- ­014- ­0 487-­z

Ninomiya, T. (2019). Epidemiological evidence of the relationship between diabetes and dementia. In Y. Nakabeppu & T. Ninomiya

(Eds.), Diabetes Mellitus. Advances in Experimental Medicine and

Biology (Vol. 1128, pp. 13–­25). Springer New York LLC. https://doi.

org/10.1007/978-­981-­13-­3540-­2_2

Oka, S., Leon, J., Sakumi, K., Ide, T., Kang, D., LaFerla, F. M., & Nakabeppu,

Y. (2016). Human mitochondrial transcriptional factor A breaks

the mitochondria-­mediated vicious cycle in Alzheimer's disease.

Scientific Reports, 6, 37889. https://doi.org/10.1038/srep3​7889

Oliveira, S. M., Ribeiro, C. A., Cardoso, I., & Saraiva, M. J. (2011). Gender-­

dependent transthyretin modulation of brain amyloid-­

β Levels:

Evidence from a mouse model of Alzheimer's disease. Journal

of Alzheimer's Disease, 27, 429–­

439. https://doi.org/10.3233/

JAD-­2011-­110488

Peila, R., Rodriguez, B. L., & Launer, L. J. (2002). Type 2 diabetes, APOE

gene, and the risk for dementia and related pathologies: The

Honolulu-­A sia aging study. Diabetes, 51, 1256–­1262. https://doi.

org/10.2337/diabe​tes.51.4.1256

Sah, S. K., Lee, C., Jang, J. H., & Park, G. H. (2017). Effect of high-­fat diet on

cognitive impairment in triple-­transgenic mice model of Alzheimer's

MAZZEI et al.

disease. Biochemical and Biophysical Research Communications, 493,

731–­736. https://doi.org/10.1016/j.bbrc.2017.08.122

Saito, T., Matsuba, Y., Mihira, N., Takano, J., Nilsson, P., Itohara, S., Iwata,

N., & Saido, T. C. (2014). Single App knock-­in mouse models of

Alzheimer's disease. Nature Neuroscience, 17, 661–­663. https://doi.

org/10.1038/nn.3697

Salas, I. H., Weerasekera, A., Ahmed, T., Callaerts-­Vegh, Z., Himmelreich,

U., D'Hooge, R., Balschun, D., Saido, T. C., De Strooper, B., & Dotti,

C. G. (2018). High fat diet treatment impairs hippocampal long-­term

potentiation without alterations of the core neuropathological features of Alzheimer disease. Neurobiology of Disease, 113, 82–­96.

https://doi.org/10.1016/j.nbd.2018.02.001

Schoenfeld, T. J., McCausland, H. C., Morris, H. D., Padmanaban, V., &

Cameron, H. A. (2017). Stress and loss of adult neurogenesis differentially reduce hippocampal volume. Biological Psychiatry, 82, 914–­

923. https://doi.org/10.1016/j.biops​ych.2017.05.013

Selkoe, D. J. (2000). Toward a comprehensive theory for Alzheimer's

disease. Hypothesis: Alzheimer's disease is caused by the cerebral

accumulation and cytotoxicity of amyloid β-­protein. Annals of the

New York Academy of Sciences, 924, 17–­25. https://doi.org/10.1111/

j.1749-­6632.2000.tb055​54.x

Sharma, M., Khan, S., Rahman, S., & Singh, L. R. (2019). The extracellular

protein, transthyretin is an oxidative stress biomarker. Frontiers in

Physiology, 10, 1–­8. https://doi.org/10.3389/fphys.2019.00005

Stein, T. D., & Johnson, J. A. (2002). Lack of neurodegeneration in transgenic mice overexpressing mutant amyloid precursor protein is associated with increased levels of transthyretin and the activation of

cell survival pathways. The Journal of Neuroscience, 22, 7380–­7388.

https://doi.org/10.1523/JNEUR​OSCI.22-­17-­07380.2002

Thal, D. R., Walter, J., Saido, T. C., & Fändrich, M. (2015). Neuropathology

and biochemistry of Aβ and its aggregates in Alzheimer's disease.

Acta Neuropathologica, 129, 167–­

182. https://doi.org/10.1007/

s0040​1-­014-­1375-­y

Vancamp, P., Gothié, J.-­D., Luongo, C., Sébillot, A., Le Blay, K., Butruille,

L., Pagnin, M., Richardson, S. J., Demeneix, B. A., & Remaud, S.

(2019). Gender-­

specific effects of transthyretin on neural stem

cell fate in the subventricular zone of the adult mouse. Scientific

Reports, 9, 1–­14. https://doi.org/10.1038/s4159​8-­019-­56156​-­w

Vandal, M., White, P. J., Tremblay, C., St-­Amour, I., Chevrier, G., Emond,

V., Lefranc¸ois, D., Virgili, J., Planel, E., Giguere, Y., Marette, A., &

Calon, F. (2014). Insulin reverses the high-­fat diet-­induced increase

in brain Aβ and improves memory in an animal model of Alzheimer

disease. Diabetes, 63, 4291–­

4301. https://doi.org/10.2337/

db14-­0375

Velayudhan, L., Killick, R., Hye, A., Kinsey, A., Güntert, A., Lynham, S.,

Ward, M., Leung, R., Lourdusamy, A., To, A. W. M., Powell, J., &

Lovestone, S. (2012). Plasma transthyretin as a candidate marker

for Alzheimer's disease. Journal of Alzheimer's Disease, 28, 369–­375.

https://doi.org/10.3233/JAD-­2011-­110611

Vieira, M., & Saraiva, M. J. (2014). Transthyretin: A multifaceted protein. BioMolecular Concepts, 5, 45–­54. https://doi.org/10.1515/

bmc-­2013-­0 038

Wakabayashi, T., Yamaguchi, K., Matsui, K., Sano, T., Kubota, T.,

Hashimoto, T., Mano, A., Yamada, K., Matsuo, Y., Kubota, N.,

Kadowaki, T., & Iwatsubo, T. (2019). Differential effects of diet-­ and

genetically-­induced brain insulin resistance on amyloid pathology in

a mouse model of Alzheimer's disease. Molecular Neurodegeneration,

14, 15. https://doi.org/10.1186/s13024-019-0315-7

Walker, J. M., Dixit, S., Saulsberry, A. C., May, J. M., & Harrison, F. E.

(2017). Reversal of high fat diet-­

induced obesity improves glucose tolerance, inflammatory response, β-­amyloid accumulation and cognitive decline in the APP/PSEN1 mouse model of

Alzheimer's disease. Neurobiology of Disease, 100, 87–­98. https://

doi.org/10.1016/j.nbd.2017.01.004

17 of 17

MAZZEI et al.

Yeh, C. W., Yeh, S. H. H., Shie, F. S., Lai, W. S., Liu, H. K., Tzeng, T. T.,

Tsay, H. J., & Shiao, Y. J. (2015). Impaired cognition and cerebral

glucose regulation are associated with astrocyte activation in the

parenchyma of metabolically stressed APPswe/PS1dE9 mice.

Neurobiology of Aging, 36, 2984–­2994. https://doi.org/10.1016/j.

neuro​biola​ging.2015.07.022

S U P P O R T I N G I N FO R M AT I O N

Additional supporting information may be found online in the

Supporting Information section.

How to cite this article: Mazzei, G., Ikegami, R., Abolhassani,

N., Haruyama, N., Sakumi, K., Saito, T., Saido, T. C., &

Nakabeppu, Y. (2021). A high-­fat diet exacerbates the

Alzheimer's disease pathology in the hippocampus of the

AppNL−F/NL−F knock-­in mouse model. Aging Cell, 00, e13429.

https://doi.org/10.1111/acel.13429

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る