リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Loss of PWT7, Located on a Supernumerary Chromosome, Is Associated with Parasitic Specialization of Pyricularia oryzae on Wheat」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Loss of PWT7, Located on a Supernumerary Chromosome, Is Associated with Parasitic Specialization of Pyricularia oryzae on Wheat

Asuke, Soichiro Horie, Akiko Komatsu, Kaori Mori, Ryota Vy, Trinh Thi Phuong Inoue, Yoshihiro Jiang, Yushan Tatematsu, Yuna Shimizu, Motoki Tosa, Yukio 神戸大学

2023.11

概要

Pyricularia oryzae, a blast fungus of gramineous plants, is composed of various host genus–specific pathotypes. The avirulence of an Avena isolate on wheat is conditioned by PWT3 and PWT4. We isolated the third avirulence gene from the Avena isolate and designated it as PWT7. PWT7 was effective as an avirulence gene only at the seedling stage or on leaves. PWT7 homologs were widely distributed in a subpopulation of the Eleusine pathotype and the Lolium pathotype but completely absent in the Triticum pathotype (the wheat blast fungus). The PWT7 homolog found in the Eleusine pathotype was one of the five genes involved in its avirulence on wheat. A comparative analysis of distribution of PWT7 and the other two genes previously identified in the Eleusine pathotype suggested that, in the course of parasitic specialization toward the wheat blast fungus, a common ancestor of the Eleusine, Lolium, Avena, and Triticum pathotypes first lost PWT6, secondly PWT7, and, finally, the function of PWT3. PWT7 or its homologs were located on core chromosomes in Setaria and Eleusine isolates but on supernumerary chromosomes in Lolium and Avena isolates. This is an example of interchromosomal translocations of effector genes between core and supernumerary chromosomes.

この論文で使われている画像

参考文献

Abe, A., Kosugi, S., Yoshida, K., Natsume, S., Takagi, H., Kanzaki, H.,

Matsumura, H., Yoshida, K., Mitsuoka, C., Tamiru, M., Innan, H., Cano,

L., Kamoun, S., and Terauchi, R. 2012. Genome sequencing reveals agronomically important loci in rice using MutMap. Nat. Biotechnol. 30:174178.

Asuke, S., Magculia, N. J., Inoue, Y., Vy, T. T. P., and Tosa, Y. 2021. Correlation of genomic compartments with contrastive modes of functional

losses of host specificity determinants during pathotype differentiation in

Pyricularia oryzae. Mol. Plant-Microbe Interact. 34:680-690.

Asuke, S., Nishimi, S., and Tosa, Y. 2020b. At least five major genes are

involved in the avirulence of an Eleusine isolate of Pyricularia oryzae on

common wheat. Phytopathology 110:465-471.

Asuke, S., Tanaka, M., Hyon, G. S., Inoue, Y., Vy, T. T. P., Niwamoto, D.,

Nakayashiki, H., and Tosa, Y. 2020a. Evolution of an Eleusine-specific

subgroup of Pyricularia oryzae through a gain of an avirulence gene.

Mol. Plant-Microbe Interact. 33:153-165.

Bankevich, A., Nurk, S., Antipov, D., Gurevich, A. A., Dvorkin, M., Kulikov, A. S. Lesin, V. M., Nikolenko, S. I., Pham, S., Prjibelski, A. D.,

Pyshkin, A. V., Sirotkin, A. V., Vyahhi, N., Tesler, G., Alekseyev, M.

A., and Pevzner, P. A. 2012. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19:

455-477.

Chen, Y., Nie, F., Xie, S. Q., Zheng, Y. F., Dai, Q., Bray, T. W., Y., X.,

Xing, J. F., Huang, Z. J., Wang, D. P., He, L. J., Luo, F., Wang, J. X., Liu,

Y. Z., and Xiao, C. L. 2021. Efficient assembly of nanopore reads via

highly accurate and intact error correction. Nat. Commun. 12:60.

Chuma, I., Zhan, S., Asano, S., Nga, N. T. T., Vy, T. T. P., Shirai, M.,

Ibaragi, K., and Tosa, Y. 2010. PWT1, an avirulence gene of Magnaporthe

oryzae tightly linked to the rDNA locus, is recognized by two staple crops,

common wheat and barley. Phytopathology 100:436-443.

Cruz, C. D., and Valent, B. 2017. Wheat blast disease: Danger on the move.

Trop. Plant Pathol. 42:210-222.

Dean, R. A., Talbot, N. J., Ebbole, D. J., Farman, M. L., Mitchell, T. K.,

Orbach, M. J., Thon, M., Kulkarni, R., Xu, J. R., Pan, H., Read, N.

D., Lee, Y. H., Carbone, I., Brown, D., Oh, Y. Y., Donofrio, N., Jeong,

J. S., Soanes, D. M., Djonovic, S., Kolomiets, E., Rehmeyer, C., Li, W.,

Harding, M., Kim, S., Lebrun, M. H., Bohnert, H., Coughlan, S., Butler,

J., Calvo, S., Ma, L. J., Nicol, R., Purcell, S., Nusbaum, C., Galagan,

J. E., and Birren, B. W. 2005. The genome sequence of the rice blast

fungus Magnaporthe grisea. Nature 434:980-986.

Gladieux, P., Condon, B., Ravel, S., Soanes, D., Maciel, J. L. N., Nhani, A.,

Chen, L., Terauchi, R., Lebrun, M. H., Tharreau, D., Mitchell, T., Pedley,

K. F., Valent, B., Talbot, N. J., Farman, M., and Fournier, E. 2018. Gene

flow between divergent cereal- and grass-specific lineages of the rice blast

fungus Magnaporthe oryzae. mBio 9:e01219-17.

Gómez Luciano, L. B., Tsai, I. J., Chuma, I., Tosa, Y., Chen, Y.-H., Li,

J.-Y., Li, M.-Y., Lu, M.-Y. J., Nakayashiki, H., and Li, W.-H. 2019. Blast

fungal genomes show frequent chromosomal changes, gene gains and

losses, and effector gene turnover. Mol. Biol. Evol. 36:1148-1161.

Huson, D. H., and Bryant, D. 2006. Application of phylogenetic networks

in evolutionary studies. Mol. Biol. Evol. 23:254-267.

Inoue, Y., Vy, T. T. P., Yoshida, K., Asano, H., Mitsuoka, C., Asuke, S., Anh,

V. L., Cumagun, C. J. R., Chuma, I., Terauchi, R., Kato, K., Mitchell, T.,

Valent, B., Farman, M., and Tosa, Y. 2017. Evolution of the wheat blast

fungus through functional losses in a host specificity determinant. Science

357:80-83.

Islam, M. T., Croll, D., Gladieux, P., Soanes, D. M., Persoons, A.,

Bhattacharjee, P., Hossain, M. S., Gupta, D. R., Rahman, M. M., Mahboob, M. G., Cook, N., Salam, M. U., Surovy, M. Z., Sancho, V. B.,

Maciel, J. L., NhaniJúnior, A., Castroagudín, V. L., Reges, J. T., Ceresini,

P. C., Ravel, S., Kellner, R., Fournier, E., Tharreau, D., Lebrun, M. H.,

McDonald, B. A., Stitt, T., Swan, D., Talbot, N. J., Saunders, D. G., Win,

J., and Kamoun, S. 2016. Emergence of wheat blast in Bangladesh was

caused by a South American lineage of Magnaporthe oryzae. BMC Biol.

14:84.

Kato, H., Yamamoto, M., Yamaguchi-Ozaki, T., Kadouchi, H., Iwamoto, Y.,

Nakayashiki, H., Tosa, Y., Mayama, S., and Mori, N. 2000. Pathogenicity, mating ability and DNA restriction fragment length polymorphisms

of Pyricularia populations isolated from Gramineae, Bambusideae and

Zingiberaceae plants. J. Gen. Plant Pathol. 66:30-47.

Kusaba, M., Mochida, T., Naridomi, T., Fujita, Y., Chuma, I., and Tosa, Y.

2014. Loss of a 1.6 Mb chromosome in Pyricularia oryzae harboring

two alleles of AvrPik leads to acquisition of virulence to rice cultivars

containing resistance alleles at the Pik locus. Curr. Genet. 60:315-325.

Langner, T., Harant, A., Gomez-Luciano, L. B., Shrestha, R. K., Malmgren,

A., Latorre, S. M., Burbano, H. A., Win, J., and Kamoun, S. 2021.

Genomic rearrangements generate hypervariable mini-chromosomes in

host-specific isolates of the blast fungus. PLoS Genet. 17:e1009386.

Latorre, S. M., Were, V. M., Foster, A. J., Langner, T., Malmgren, A.,

Harant, A., Asuke, S., Reyes-Avila, S., Gupta, D. R., Jensen, C., Ma,

W., Mahmud, N. U., Mehebub, M. S., Mulenga, R. M., Muzahid, A. N.

M., Paul, S. K., Rabby, S. M. F., Rahat, A. A. M., Ryder, L., Shrestha,

R.-K., Sichilima, S., Soanes, D. M., Singh, P. K., Bentley, A. R., Saunders,

D. G. O., Tosa, Y., Croll, D., Lamour, K. H., Islam, T., Tembo, B., Win,

J., Talbot, N. J., Burbano, H. A., and Kamoun, S. 2023. Genomic surveillance uncovers a pandemic clonal lineage of the wheat blast fungus. PLoS

Biol. 21:e3002052.

Li, H., and Durbin, R. 2010. Fast and accurate long-read alignment with

Burrows-Wheeler transform. Bioinformatics 26:589-595.

Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth,

G., Abecasis, G., and Durbin, R. 2009. The sequence alignment/map

format and SAMtools. Bioinformatics 25:2078-2079.

Livak, K. J., and Schmittgen, T. D. 2001. Analysis of relative gene expression

data using real-time quantitative PCR and the 2−C(T) method. Methods

25:402-408.

Luo, C.-X., Yin, L.-F., Ohtaka, K., and Kusaba, M. 2007. The 1.6 Mb chromosome carrying the avirulence gene AvrPik in Magnaporthe oryzae isolate 84R-62B is a chimera containing chromosome 1 sequences. Mycol.

Res. 111:232-239.

McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., Garimella, K., Altshuler, D., Gabriel, S., Daly, M., and DePristo,

M. A. 2010. The genome analysis toolkit: A MapReduce framework for

analyzing next-generation DNA sequencing data. Genome Res. 20:12971303.

Murakami, J., Tosa, Y., Kataoka, T., Tomita, R., Kawasaki, J., Chuma, I.,

Sesumi, Y., Kusaba, M., Nakayashiki, H., and Mayama, S. 2000. Analysis

of host species specificity of Magnaporthe grisea toward wheat using a

genetic cross between isolates from wheat and foxtail millet. Phytopathology 90:1060-1067.

Nakayashiki, H., Kiyotomi, K., Tosa, Y., and Mayama, S. 1999. Transposition of the retrotransposon MAGGY in heterologous species of filamentous fungi. Genetics 153:693-703.

Oh, H. S., Tosa, Y., Takabayashi, N., Nakagawa, S., Tomita, R., Don, L. D.,

Kusaba, M., Nakayashiki, H., and Mayama, S. 2002. Characterization

of an Avena isolate of Magnaporthe grisea and identification of a locus

conditioning its specificity on oat. Can. J. Bot. 80:1088-1095.

Peng, Z., Oliveira-Garcia, E., Lin, G., Hu, Y., Dalby, M., Migeon, P., Tang,

H., Farman, M., Cook, D., White, F. F., Valent, B., and Liu, S. 2019.

Effector gene reshuffling involves dispensable mini-chromosomes in the

wheat blast fungus. PLoS Genet. 15:e1008272.

Rahnama, M., Novikova, O., Starnes, J. H., Zhang, S., Chen, L., and

Farman, M. L. 2020. Transposon-mediated telomere destabilization: A

driver of genome evolution in the blast fungus. Nucleic Acids Res. 48:

7197-7217.

Sanchez Jr., E., Asano, K., and Sone, T. 2011. Characterization of Inago1

and Inago2 retrotransposons in Magnaporthe oryzae. J. Gen. Plant Pathol.

77:239-242.

Singh, P. K., Gahtyari, N. C., Roy, C., Roy, K. K., He, X., Tembo, B., Xu,

K., Juliana, P., Sonder, K., Kabir, M. R., and Chawade, A. 2021. Wheat

blast: A disease spreading by intercontinental jumps and its management

strategies. Front. Plant Sci. 12:710707.

Sullivan, M. J., Petty, N. K., and Beatson, S. A. 2011. Easyfig: A genome

comparison visualizer. Bioinformatics 27:1009-1010.

Tagle, A. G., Chuma, I., and Tosa, Y. 2015. Rmg7, a new gene for resistance

to Triticum isolates of Pyricularia oryzae identified in tetraploid wheat.

Phytopathology 105:495-499.

Takabayashi, N., Tosa, Y., Oh, H. S., and Mayama, S. 2002. A gene-for-gene

relationship underlying the species-specific parasitism of Avena/Triticum

isolates of Magnaporthe grisea on wheat cultivars. Phytopathology

92:1182-1188.

Tembo, B., Mulenga, R. M., Sichilima, S., M’siska, K. K., Mwale, M.,

Chikoti, P. C., Singh, P. K., He, X., Pedley, K. F., Peterson, G. L., Singh,

R. P., and Braun, H. J. 2020. Detection and characterization of fungus

(Magnaporthe oryzae pathotype Triticum) causing wheat blast disease

on rain-fed grown wheat (Triticum aestivum L.) in Zambia. PLoS One

15:e0238724.

Tosa, Y. 1992. A model for the evolution of formae speciales and races.

Phytopathology 82:728-730.

Tosa, Y., Hirata, K., Tamba, H., Nakagawa, S., Chuma, I., Isobe, C., Osue,

J., Urashima, A. S., Don, L. D., Kusaba, M., Nakayashiki, H., Tanaka,

A., Tani, T., Mori, N., and Mayama, S. 2004. Genetic constitution and

pathogenicity of Lolium isolates of Magnaporthe oryzae in comparison

with host species-specific pathotypes of the blast fungus. Phytopathology

94:454-462.

Tosa, Y., Osue, J., Eto, Y., Oh, H. S., Nakayashiki, H., Mayama, S., and

Leong, S. A. 2005. Evolution of an avirulence gene AVR1-CO39 concomitant with the evolution and differentiation of Magnaporthe oryzae.

Mol. Plant-Microbe Interact. 18:1148-1160.

Urashima, A. S., Igarashi, S., and Kato, H. 1993. Host range, mating type, and

fertility of Pyricularia grisea from wheat in Brazil. Plant Dis. 77:12111216.

Vy, T. T. P., Hyon, G.-S., Nga, N. T. T., Inoue, Y., Chuma, I., and Tosa,

Y. 2014. Genetic analysis of host-pathogen incompatibility between

Lolium isolates of Pyricularia oryzae and wheat. J. Gen. Plant Pathol. 80:

59-65.

Vol. 36, No. 11, 2023 / 725

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る