リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「北海道のホルスタイン集団における 泌乳曲線の推定ならびに体細胞スコアの遺伝的能力評価に関する研究」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

北海道のホルスタイン集団における 泌乳曲線の推定ならびに体細胞スコアの遺伝的能力評価に関する研究

山口 諭 帯広畜産大学

2022.09.06

概要

北海道のホルスタイン集団における泌乳曲線の推定,体細胞スコア(SCS)と乳房炎の遺伝的能力評価方法に関する4つの研究を実施した.

 第一の研究の目的は,乳量,乳脂量,無脂固形分量,乳タンパク質量,乳脂率,無脂固形分率,乳タンパク質率およびSCSの8形質に対し,23種類の泌乳曲線モデルを当てはめその適合性を検討することである.泌乳曲線モデルには,1次から5次のLegendre多項式モデル(L1,L2,L3,L4およびL5),Legendre多項式にWilminkの指数関数を加えたモデル(L1W,L2W,L3W,L4WおよびL5W)および対数関数と周期関数を組み合わせた3次から5次の13種のモデルを用いた.泌乳曲線モデルの適合性の検討には,赤池の情報量規準,ベイズ流情報量規準(BIC),決定係数および平均誤差の中で,パラメータ数のみならず観測値数も考慮してモデルの適合性を判断できるBICを主に使用した.乳量,乳脂量,無脂固形分量および乳成分率における泌乳曲線は,L4,L3W,L4WおよびL5Wのモデルが高い適合性を示した.乳タンパク質量およびSCSに関して適合性が高い泌乳曲線は,対数関数および周期関数の組み込まれたモデルであった.本研究で選択された泌乳曲線モデルは,標準泌乳曲線として飼養管理の有益な指標として活用できる.

 第二の研究の目的は,多形質予測法(Multiple-Trait Prediction; MTP)を使用して途中経過記録から305日乳生産量の予測精度を調査することである.MTPによる3050乳生産量は,事前情報の種類,事前情報の更新頻度および検定手法を変更して検定回数ごとに予測した.精度の検証は,1力月間隔で実施した11回の検定0記録から検定0間隔法を用いて推定した3050乳生産量を真の値と仮定して行った.その結果,事前情報は,牛群ごとに細分化し,頻繁に更新することが3050乳生産量の予測精度を維持するのに重要であると考えられた.また,ΜTPは,泌乳初期のほか様々な検定方法や検定間隔の記録からもより精度の高い3050乳生産量の予測が可能な手法であった.

 第三の研究目的は,3産次までの検定0SCSにおける乳期内の相加的遺伝分散の変動を調査し,遺伝評価に最適な検定0モデルを検討することおよび3050換算の遺伝率を推定することである.変量回帰分析における相加的遺伝効果と永続的環境効果の分娩後0数に対する推移の説明には,それぞれ0次(反復)から1次および1次から4次のLegendre多項式を用いた.モデル選択の指標には,305日平均評価値間の相関,偏りおよび平均平方誤差を用いた.遺伝評価モデルは,相加的遺伝効果を反復モデルとし永続的環境効果に3次のLegendre多項式を当てはめるのが実用上最適であると考えられた.3050換算の遺伝率は,初産,2産および3産でそれぞれ0.18,0.19および0.20であった.

 第四の研究目的は,乳房炎の遺伝率,乳房炎とSCS統計量間の遺伝相関を推定し,異なるモデルの実用性について比較を行うことである.乳房炎は,分娩後3050以内に発症したか否かの2値形質として定義したが線形形質として扱った.乳房炎指示形質として,平均SCS(avSCS),SCSの標準偏差(sdSCS)および最大SCS(maxSCS)を定義し,分娩後3050までの検定0記録を用いて算出した.検討したモデルは,4形質反復アニマルモデル(multi-trait repeatability; MTRP)と4形質多産次アニマルモデル(multi-trait multiple-lactation; MTML)である.乳房炎の遺伝率は,全てのモデルにおいて0.05以下であった.MTRPで推定された乳房炎とavSCS,sdSCSおよびmaxSCSとの遺伝相関は,それぞれ0.66,0.79および0.82であった.scs統計量と乳房炎間の高い遺伝相関から,SCS統計量との多形質モデル評価による乳房炎の遺伝評価値の信頼度向上が期待された.また,MTMLで推定された同一形質における産次間の遺伝相関が正で1に近似したことより,異なる産次を異なる形質として扱う必要がないことが示唆された.

 泌乳曲線モデルは,正確性,利便性および計算コストなどのバランスを考慮した選択が必要である.泌乳曲線を利用して得られる0量,累積量,形状および遺伝評価値といった情報を日々の飼養管理や選抜淘汰に活用することで牛群の生産性が向上するものと考えられた.SCSと乳房炎は,同一形質の初産と2産間に高い遺伝相関が認められたことにより,いずれも初産の評価値による選抜が可能であると考えられた.しかし,乳房炎は,遺伝率が低いためその指示形質と一緒に遺伝評価を行い選抜の信頼性を向上させる必要がある.SCSと乳房炎は,遺伝相関から同一形質ではないと考えられたことより,SCSの遺伝評価のみで乳房炎抵抗性の遺伝的改良を行うことは効率的でないことが示唆された.本研究で提案したSCSと乳房炎の遺伝評価モデルは,選抜の正確性を向上させるほか乳質改善による損失の低減が間接反応として期待できるものと推察された.

この論文で使われている画像

参考文献

Ali TE, Schaeffer LR. 1987. Accounting for covariances among test day milk yields in dairy cows. Canadian Journal of Animal Science 67, 637-644.

Bohmanova J, Miglior F, Jamrozik J. 2009. Use of test-day records beyond three hundred five days for estimation of three hundred five-day breeding values for production traits and somatic cell score of Canadian Holsteins. Journal of Dairy Science 92, 5314-5325.

Bohmanova J, Miglior F, Jamrozik J, Misztal I, Sullivan PG. 2008. Comparison of random re- gression models with legendre polynomials and linear splines for production traits and somatic cell score of Canadian Holstein cows. Journal of Dairy Science 91, 3627-3638.

Brody S, Ragsdale AC, Turner CW. 1923. The rate of decline of milk secretion with the advance of the period of lactation. Journal of General Physiology 5, 441-444.

Brody S, Turner CW, Ragsdale AC. 1924. The relation between the initial rise and the subse- quent decline of milk secretion following parturition. Journal of General Physiology 6, 541-545.

Bucek P, Zottl K, Kynt¨aj¨a J, Miglior F, Leclerc H, van der Westhuizen J, Kuwan K, Lavon Y, Haase K, Trejo C, Radzio D, Oudah EZM. 2015.World-wide trends in milk-recording in cattle. Icar Technical Series 19, 107-119.

Caccamo M, Veerkamp RF, de Jong G, Pool MH, Petriglieri R, Licitra G. 2008. Variance com- ponents for test-day milk, fat, and protein yield, and somatic cell score for analyzing management information. Journal of Dairy Science 91, 3268-3276.

Carl´en E, Strandberg E, Roth A. 2004. Genetic parameters for clinical mastitis, somatic cell score, and production in the first three lactations of Swedish Holstein cows. Journal of Dairy Science 87, 3062-3070.

Congleton Jr. WR, Everett RW. 1980. Application of the incomplete gamma function to predict cumulative milk production. Journal of Dairy Science 63, 109-119.

Da Y, Grossman M, Misztal I, Wiggans GR. 1992. Estimation of genetic parameters for so- matic cell score in Holsteins. Journal of Dairy Science 75, 2265-2271.

de Haas Y, Ouweltjes W, ten Napel J, Windig JJ, de Jong G. 2008. Alternative somatic cell count traits as mastitis indicators for genetic selection. Journal of Dairy Science 91, 2501-2511.

de Roos APW, Harbers AGF, de Jong G. 2003. Genetic parameters of test-Day somatic cell score estimated with a random regression model. Interbull Bulletin 31, 97-101.

Detilleux J, Leroy PL. 2000. Application of a mixed rormal mixture model for the estimation of mastitis-related parameters. Journal of Dairy Science 83, 2341-2349.

Doekes HP, Veerkamp RF, Bijma P, Hiemstra SJ, Windig J. 2018. Value of the Dutch Holstein Friesian germplasm collection to increase genetic variability and improve genetic merit. Journal of Dairy Science 101, 10022-10033.

独立行政法人家畜改良センター. 2008.乳用牛評価報告 第 28 号.pp.30-36.独立行政法人家畜改良センター,福島県.

独立行政法人家畜改良センター. 2013.乳用牛評価報告 第 33 号.pp.9-18.独立行政法人家畜改良センター,福島県.

独立行政法人家畜改良センター. 2015.乳用牛評価報告 第 35 号.pp.9-20.独立行政法人家畜改良センター,福島県.

独立行政法人家畜改良センター. 2017.遺伝能力曲線 [homepage on the Internet]. 独立行政法人家畜改良センター,福島県, [cited 10 September 2020]. Available from URL: http://www.nlbc.go.jp/kachikukairyo/iden/nyuyogyu/hyokahoho/lact.html

Druet T, Jaffr´ezic F, Boichard D, Ducrocq V. 2003. Modeling lactation curves and estimation of genetic parameters for first lactation test-day records of French Holstein cows. Journal of Dairy Science 86, 2480-2490.

Druet T, Jaffr´ezic F, Ducrocq V. 2005. Estimation of genetic parameters for test day records of dairy traits in the first three lactations. Genetics Selection Evolution 37, 257-271.

Dutch/Flemish Cattle Improvement Cooperative CRV . 2016. Publications (E-27 Udder Health) [homepage on the Internet]. Dutch/Flemish Cattle Improvement Cooper- ative CRV, Arnhem, Netherlands; [cited 7 January 2019]. Available from URL: https://www.crv4all-international.com/publications/page/5

Emanuelson U, Danell B, Philipsson J. 1988. Genetic parameters for clinical mastitis, somatic cell counts, and milk production estimated by multiple-trait restricted maximum like- lihood. Journal of Dairy Science 71, 467-476.

Everett RW, Carter HW. 1968. Accuracy of test interval method of calculating dairy herd im- provement association records. Journal of Dairy Science 51, 1936-1941.

Finocchiaro R, Visentin G, Penasa M, van Kaam JBCHM, Marusi M, Civati G, Cassandro M. 2018. Alternative use of somatic cells counts in genetic selection for mastitis resistance: A new estimated breeding value for Italian Holstein breed. Interbull Bulletin 53 31-33.

Fujii C, Suzuki M. 2006. Comparison of homogeneity and heterogeneity of residual variance using random regression test-day models for first lactation Japanese Holstein cows. Animal Science Journal 77, 28-32.

Gaines WL. 1927. Persistency of lactation in dairy cows. University of Illinois Agricultural Ex- periment Station 288, 355-424.

Govignon-Gion A, Dassonneville R, Baloche G, Ducrocq V. 2016. Multiple trait genetic evalu- ation of clinical mastitis in three dairy cattle breeds. Animal 10, 558-565.

Grossman M, Koops W J. 1988. Multiphasic analysis of lactation curves in dairy cattle. Journal of Dairy Science 71, 1598-1608.

Guo Z, Swalve HH. 1995. Modeling of the lactation curve as a sub-model in the evaluation of test day records. Proceedings of the open session of the Interbull annual meeting, Prague, Czech Republic, September 7-8, 1995. International Bull Evaluation Service Bulletin Number 11. Department of Animal Breeding and Genetics, SLU, Uppsala, Sweden.

Guo Z, Swalve HH. 1997. Comparison of different lactation curve sub-models in test day models. Proceedings of the 1997 Interbull meeting, Vienna, Austria, August 28-29, 1997. Inter- national Bull Evaluation Service Bulletin Number 16, 75-79. Department of Animal Breeding and Genetics, SLU, Uppsala, Sweden.

Hagiya K. 2019. Development of genetic evaluation for milk production traits of Holsteins in Japan. Animal Science Journal 90, 457-461.

萩谷功一,安宅 倭,河原孝吉,後藤裕作,鈴木三義,白井達夫,渥美 正. 2004. ホルスタイン雌牛の検定日記録から乳期生産量を予測する 3 種の方法の比較.日本畜産学会報 75,345-351.

Hagiya K, Atagi Y, Osawa T, Yamazaki T. 2020. Genetic evaluation of heat tolerance in Hol- stein cows in Japan. Animal Science Journal 91, e13437.

Hagiya K, Yamazaki T, Nagamine Y, Togashi K, Yamaguchi S, Gotoh Y, Kawahara T, Masu- da Y, Suzuki M. 2014. Genetic correlations between production and disease traits during first lactation in Holstein cows. Animal 8, 217-223.

Haile-Mariam M, Goddard ME, Bowman PJ. 2001. Estimates of genetic parameters for daily somatic cell count of Australian dairy cattle. Journal of Dairy Science 84, 1255-1264. Henderson CR. 1984. Applications of linear models in animal breeding. University of Guelph Press, Guelph, ON, Canada.

Hostens M, Ehrlich J, Van Ranst B, Opsomer G. 2012. On-farm evaluation of the effect of metabolic diseases on the shape of the lactation curve in dairy cows through the MilkBot lactation model. Journal of Dairy Science 95, 2988-3007.

一般社団法人 J ミルク. 2019. 酪農経営関連の基礎的データ [homepage on the Internet]. 一般社団法人 J ミルク,東京, [cited 10 September 2020]. Available from URL: https://www.j- milk.jp/gyokai/database/keiei-kiso.html

Jakobsen JH, Madsen P, Jensen J, Pedersen J, Christensen LG, Sorensen DA. 2002. Genetic parameters for milk production and persistency for Danish Holsteins estimated in random regression models using REML. Journal of Dairy Science 85, 1607-1616.

Jamrozik J, Kistemaker GJ, Dekkers JCM, Schaeffer LR. 1997. Comparison of possible covari- ates for use in a random regression model for analyses of test day yields. Journal of Dairy Science 80, 2550-2556.

Jamrozik J, Koeck A, Miglior F, Kistemaker GJ, Schenkel FS, Kelton DF, Van Doormaal BJ. 2013. Genetic and genomic evaluation of mastitis resistance in Canada. Interbull Bul- letin 47, 43-51.

Jensen J. 2001. Genetic evaluation of dairy cattle using test-day models. Journal of Dairy Sci- ence 84, 2803-2812.

Jones T. 1997. Empirical Bayes prediction of 305-day milk production. Journal of Dairy Science 80, 1060-1075.

Jones GM, Heald CW, Patterson WN, Robinson DE. 1977. Use of the Fossomatic somatic cell counts in a mastitis control program. Journal of Food Protection 40, 490-492.

河原孝吉,後藤裕作,増田 豊,山口 諭,鈴木三義. 2010.ホルスタインにおける縦断2値データを使用した雌牛の受胎率に影響する遺伝的および環境的要因.日本畜産学会報 81,121-132.

河原孝吉,曽我部道彦,斉藤祐介,鈴木三義. 2000.朝または夕の産乳能力の検定記録から1日当たりの乳量と乳成分量を推定するための要因.日本畜産学会報 71,235-244.

Kendrick JF. 1940. The cow tester’s manual. pp.23-27. United States Government Printing Of- fice, Washington, DC.

Kennedy BW, Sethar MS, Moxley JE, Downey BR. 1982. Heritability of somatic cell count and its relationship with milk yield and composition in Holsteins. Journal of Dairy Science 65, 843-847.

Keown JF, Van Vleck LD. 1973. Extending lactation records in progress to 305-day equivalent. Journal of Dairy Science 56, 1070-1079.

Koeck A, Heringstad B, Egger-Danner C, Fuerst C, Fuerst-Waltl B. 2010. Comparison of dif- ferent models for genetic analysis of clinical mastitis in Austrian Fleckvieh dual-purpose cows. Journal of Dairy Science 93, 4351-4358.

Koeck A, Miglior F, Kelton DF, Schenkel FS. 2012a. Alternative somatic cell count traits to improve mastitis resistance in Canadian Holsteins. Journal of Dairy Science 95, 432-439. Koeck A, Miglior F, Kelton DF, Schenkel FS. 2012b. Short communication: Genetic parame- ters for mastitis and its predictors in Canadian Holsteins. Journal of Dairy Science 95, 7363-7366.

公益社団法人北海道酪農検定検査協会. 2013.平成 24 年 2012 年間検定成績 Annual Report. pp.38.公益社団法人北海道酪農検定検査協会,北海道.

公益社団法人北海道酪農検定検査協会. 2017. 平成 28 年度(2016)個体の 305 日間成績 Vol.41 [homepage on the Internet]. 公益社団法人北海道酪農検定検査協会,北海道, [cited 15 September 2020]. Available from URL: https://www.hmrt.or.jp/report

公益社団法人北海道酪農検定検査協会. 2020. 2019 年 年間検定成績 [homepage on the Internet].公益社団法人北海道酪農検定検査協会,北海道, [cited 10 September 2020]. Available from URL: https://www.hmrt.or.jp/report

Lassen J, Hansen M, Sørensen MK, Aamand GP, Christensen LG, Madsen P. 2003. Genetic relationship between body condition score, dairy character, mastitis, and diseases other than mastitis in first-parity Danish Holstein cows. Journal of Dairy Science 86, 3730-3735.

Legates JE, Grinnells. 1952. Genetic relationships in resistance to mastitis in dairy cattle. Jour- nal of Dairy Science 35, 829-833.

Lidauer M, M¨antysaari EA. 1999. Multiple trait reduced rank random regression test-day model for production traits. Interbull Bulletin 22, 74-80.

Liu Z, Reinhardt F, Bu¨nger A, Jaitner J, Reents R. 2003. Genetic evaluation of somatic cell scores using a random regression test day model for a very large dairy cattle popu- lation. Interbull Bulletin 31, 88-91.

Liu YX, Zhang J, Schaeffer LR, Yang RQ, Zhang WL. 2006. Optimal random regression mod- els for milk production in dairy cattle. Journal of Dairy Science 89, 2233-2235.

L´opez-Romero P, Caraban˜o MJ. 2003. Comparing alternative random regression models to analyse first lactation daily milk yield data in Holstein-Friesian cattle. Livestock Pro- duction Science 82, 81-96.

Lush JL. 1950. Inheritance of susceptibility to mastitis. Journal of Dairy Science 33, 121-125. Luttinen A, Juga J. 1997. Genetic relationships between milk yield, somatic cell count, mastitis, milkability and leakage in Finnish dairy cattle population. Interbull Bulletin 15, 78-83.

Martin P, Barkema HW, Brito LF, Narayana SG, Miglior F. 2018. Symposium review: Novel strategies to genetically improve mastitis resistance in dairy cattle. Journal of Dairy Science 101, 2724-2736.

増田 豊,鈴木三義. 2008.乳牛の各泌乳ステージにおける検定日乳量に影響を及ぼす諸要因の検討.日本畜産学会報 79,9-18.

増田 豊,鈴木三義. 2011.乳用牛の泌乳持続性に対する遺伝評価モデルの比較.日本畜産学会報82,297-304.

Miller RH, Hooven Jr. NW, Smith JW, Harvey WR, Creegan ME. 1972b. Modified regression for estimating total lactation from part-lactation yields. Journal of Dairy Science 55, 208-213.

Miller RH, Pearson RE, Fohrman MH, Creegan ME. 1972a. Methods of projecting complete lactation production from part-lactation yield. Journal of Dairy Science 55, 1602-1606.

Misztal I, Tsuruta S, Strabel T, Auvray B, Druet T, Lee DH. 2002. BLUPF90 and related pro- grams (BGF90). Proceedings of the 7th world congress on genetics applied to livestock production, Montpellier, France. CD-ROM Communication No. 28-07.

三浦伸也,鈴木三義. 2006.北海道の乳牛集団における体細胞スコアの遺伝率推定.日本畜産学会報 77,1-8.

Monardes HG, Kennedy BW, Moxley JE. 1983. Heritabilities of measures of somatic cell count per lactation. Journal of Dairy Science 66, 1707-1713.

Negussie E, Strand´en I, M¨antysaari EA. 2008. Genetic association of clinical mastitis with test- day somatic cell score and milk yield during first lactation of finnish ayrshire cows. Journal of Dairy Science 91, 1189-1197.

Nelder JA. 1966. Inverse polynomials, a useful group of multi-factor response functions. Bio- metrics 22, 128-141.

Nishiura A, Sasaki O, Aihara M, Takeda H, Satoh M. 2015. Genetic analysis of fat-to-protein ratio, milk yield and somatic cell score of Holstein cows in Japan in the first three lactations by using a random regression model. Animal Science Journal 86, 961-969.

Nordic Cattle Genetic Evaluation. 2017. NAV routine genetic evaluation of dairy cattle - data and genetic models. 5th edition, [homepage on the Internet]. Nordic Cattle Genetic Evaluation, Aarhus, [cited 17 September 2020]. Available from URL: http://www.nordicebv.info/wp-content/uploads/2017/03/NAV-routine-genetic- evaluation-122016 FINAL.pdf

Norman HD, Dickinson FN, Wright JR. 1985. Merit of extending completed records of less than 305 days. Journal of Dairy Science 68, 2646-2654.

Norman HD, VanRaden PM, Wright JR, Clay JS. 1999. Comparison of test interval and best prediction methods for estimation of lactation yield from monthly, a.m.-p.m., and tri- monthly testing. Journal of Dairy Science 82, 438-444.

Ødeg˚ard J, Jensen J, Klemetsdal G, Madsen P, Heringstad B. 2003. Genetic analysis of so- matic cell score in Norwegian cattle using random regression test-day models. Journal of Dairy Science 86, 4103-4114.

Pereira JAC, Suzuki M, Hagiya K. 2001. Prediction of 305 days milk production from early records in dairy cattle using an empirical Bayes method. Asian-Australasian Journal of Animal Science 14, 1511-1515.

P´erez-Cabal MA, Charfeddine N. 2013. Genetic relationship between clinical mastitis and sev- eral traits of interest in Spanish Holstein dairy cattle. Interbull Bulletin 47, 77-81.

Pinedo PJ, De Vries A, Webb DW. 2010. Dynamics of culling risk with disposal codes reported by dairy herd improvement dairy herds. Journal of Dairy Science 93, 2250-2261.

Ptak E, Jagusiak W, Z˙ arnecki A, Otwinowska-Mindur A. 2011. Heritabilities and genetic correlations of lactational and daily somatic cell score with conformation traits in Polish Holstein cattle. Czech Journal of Animal Science 56, 205-212.

Ptak E, Schaeffer LR. 1993. Use of test day yields for genetic evaluation of dairy sires and cows. Livestock Production Science 34, 23-34.

Read RB, Reyes Jr AL, Bradshaw JG, Peeler JT. 1969. Evaluation of seven procedures for de- tection of abnormal milk due to mastitis. Journal of Dairy Science 52, 1359-1367.

Reents R, Jamrozik J, Schaeffer LR, Dekkers JCM. 1995. Estimation of genetic parameters for test day records of somatic cell score. Journal of Dairy Science 78, 2847-2857.

Rupp R, Boichard D. 1999. Genetic parameters for clinical mastitis, somatic cell score, produc- tion, udder type traits, and milking ease in first lactation Holsteins. Journal of Dairy Science 82, 2198-2204.

Sargent FD, Lytton VH, Wall Jr. OG. 1968. Test interval method of calculating dairy herd im- provement association records. Journal of Dairy Science 51, 170-179.

佐々木 修,相原 光夫,西浦 明子,武田 尚人,佐藤 正寛. 2013.ホルスタイン種牛群における管理指標としての標準乳量算出モデルの検討.日本畜産学会報 84,1-10.

佐々木 修,相原 光夫,西浦 明子,武田 尚人,佐藤 正寛. 2015.乳量および乳成分率への環境の影響と泌乳曲線による環境要因の補正.日本畜産学会報 86,13-27.

Schaeffer LR, Burnside EB. 1976. Estimating the shape of the lactation curve. Canadian Jour- nal of Animal Science 56, 157-170.

Schaeffer LR, Dekkers JCM. 1994. Random regressions in animal models for test-day production in dairy cattle. The proceedings of 5th world congress on genetics applied to livestock production, Guelph, Ontario, Canada, August, 18, 443-446, 1994.

Schaeffer LR, Jamrozik J. 1996. Multiple-trait prediction of lactation yields for dairy cows. Journal of Dairy Science 79, 2044-2055.

Schaeffer LR, Minder CE, Mcmillan I, Burnside EB. 1977. Nonlinear techniques for predicting 305-Day lactation production of Holsteins and Jerseys. Journal of Dairy Science 60, 1636-1644.

Schutz MM, Hansen LB, Steuernagel GR, Reneau JK. 1990. Genetic parameters for somatic cells, protein, and fat in milk of Holsteins. Journal of Dairy Science 73, 494-502.

Sewalem A, Miglior F, Kistemaker GJ, Van Doormaal BJ. 2006. Analysis of the relationship between somatic cell score and functional longevity in Canadian dairy cattle. Journal of Dairy Science 89, 3609-3614.

社団法人北海道乳牛検定協会. 1989.乳牛の泌乳曲線.8-33.社団法人乳牛検定協会.北海道. 社団法人家畜改良事業団. 2009.乳用種雄牛評価成績 2008-III.pp9-13.社団法人家畜改良事業団,東京都.

社団法人家畜改良事業団. 2010.乳用種雄牛評価成績 2009-III.pp9-10.社団法人家畜改良事業団,東京都.

Shaw AO, Beam AL. 1935. The effect of mastitis upon milk production. Journal of Dairy Sci- ence 18, 353-357.

Shook GE, Johnson LP, Dickinson FN. 1980. Factors for improving accuracy of estimates of test-interval yield. Dairy Herd Improvement Letter 56, 9-24.

Silvestre AM, Petim-Batista F, Colaco J. 2006. The accuracy of seven mathematical functions in modeling dairy cattle lactation curves based on test-day records from varying sample schemes. Journal of Dairy Science 89, 1813-1821.

Stanton TL, Jones LR, Everett RW, Kachman SD. 1992. Estimating milk, fat and protein lac- tation curves with a test day model. Journal of Dairy Science 75, 1691-1700.

Statistical Analysis System(SAS). 2004. SAS onlinedoc ®9.1.3. SAS Institute Inc. Cary, NC. Strabel T, Szyda J, Ptak E, Jamrozik J. 2005. Comparison of random regression test-day mod-els for Polish black and white cattle. Journal of Dairy Science 88, 3688-3699.

鈴木三義. 1998.形質の評価および測定.1.7 乳牛.In: 佐々木義之(ed).1998.動物遺伝育種学実験法.第1版.pp.17-22.朝倉書店,東京.

Tsuruta S, Misztal I, Strand´en I. 2001. Use of the preconditioned conjugate gradient algorithm as a generic solver for mixed-model equations in animal breeding applications. Journal of Animal Science 79, 1166-1172.

内田雅之,熊野康隆. 2016. 北海道における原料乳の品質と今後の課題について. 乳業技術 66, 18-34.

Urioste JI, Franz´en J, Strandberg E. 2010. Phenotypic and genetic characterization of novel so-matic cell count traits from weekly or monthly observations. Journal of Dairy Science 93, 5930-5941.

Urioste JI, Franz´en J, Windig JJ, Strandberg E. 2012. Genetic relationships among mastitis and alternative somatic cell count traits in the first 3 lactations of Swedish Holsteins. Journal of Dairy Science 95, 3428-3434.

Van Bebber, Reinsch N, Junge W, Kalm E. 1999. Monitoring daily milk yields with a recursive test day repeatability model (kalman filter). Journal of Dairy Science 82, 2421-2429.

van der Werf JHJ, Goddard ME, Meyer K. 1998. The use of covariance functions and random regressions for genetic evaluation of milk production based on test day records. Journal of Dairy Science 81, 3300-3308.

VanRaden PM. 1997. Lactation yields and accuracies computed from test day yields and (co) variances by best prediction. Journal of Dairy Science 80, 3015-3022.

Van Vleck LD, Henderson CR. 1961a. Regression factors for extending part lactation milk records. Journal of Dairy Science 44, 1085-1092.

Van Vleck LD, Henderson CR. 1961b. Extending part lactation milk records by regression ig- noring herd effects. Journal of Dairy Science 44, 1519-1528.

Voelker DE. 1981. Dairy herd improvement associations. Journal of Dairy Science 64, 1269- 1277.

Wang CS, Rutledge JJ, Gianola D. 1993. Marginal inferences about variance components in a mixed linear model using gibbs sampling. Genetics Selection Evolution 25, 41-62.

White GC, Couture GW, Anderson EO, Johnson RE. 1937. Chronic bovine mastitis and milk yield. Journal of Dairy Science 20, 171-180.

Wiggans GR, Shook GE. 1987. A lactation measure of somatic cell count. Journal of Dairy Science 70, 2666-2672.

Wilmink JBM. 1987a. Adjustment of test-day milk, fat,and protein yield for age, season and stage of lactation. Livestock Production Science 16, 335-348.

Wilmink JBM. 1987b. Comparison of different methods of predicting 305-day milk yield using means calculated from within-herd lactation curves. Livestock Production Science 17, 1-17.

Windig JJ, Ouweltjes W, ten Napel J, de Jong G, Veerkamp RF, de Haas Y. 2010. Combining somatic cell count traits for optimal selection against mastitis. Journal of Dairy Science 93, 1690-1701.

Wood PDP. 1967. Algebraic model of the lactation curve in cattle. Nature 216, 164-165.

山口 諭,河原孝吉,後藤裕作,増田 豊,鈴木三義. 2007.ホルスタイン集団における最適な泌乳曲線モデルの検討.日本畜産学会報 78,415-425.

山口 諭,増田 豊,中川智史,後藤裕作,阿部隼人,馬場俊見,河原孝吉,鈴木三義. 2015.北 海道のホルスタイン集団における体細胞スコアの遺伝評価モデルの検討.日本畜産学会報 86,153-164.

山崎 武志,萩谷 功一,長嶺 慶隆,武田 尚人,山口 諭,曽我部 道彦,齊藤 祐介,中川 智史,富樫研治,鈴木 啓一. 2013. 乳用牛における泌乳ステージごとの検定日乳量に対する体細胞スコアの効果. 日本畜産学会報 84, 11-18.

Yamazaki T, Hagiya K, Takeda H, Sasaki O, Yamaguchi S, Sogabe M, Saito Y, Nakagawa S, Togashi K, Suzuki K, Nagamine Y. 2013. Genetic correlations between milk production traits and somatic cell scores on test day within and across first and second lactations in Holstein cows. Livestock Science 152, 120-126.

Yamazaki T, Takeda H, Nishiura A, Togashi K. 2009. Relationship between the lactation curve and udder disease incidence in different lactation stages in first-lactation Holstein cows. Animal Science Journal 80, 636-643.

Zavadilov´a L, Sˇt´ıpkov´a M, Sˇebkov´a N, Svit´akov´a A. 2015. Genetic analysis of clinical mastitis data for Holstein cattle in the Czech Republic. Archives Animal Breeding 58, 199-204. Zavadilov´a L, Wolf J, Sˇt´ıpkov´a M, Nˇemcov´a E, Jamrozik J. 2011. Genetic parameters for so- matic cell score in the first three lactations of Czech Holstein and Fleckvieh breeds using a random regression model. Czech Journal of Animal Science 56, 251-260.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る