リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Delivery of Gas onto the Circumplanetary Disk of Giant Planets: Planetary-mass Dependence of the Source Region of Accreting Gas and Mass Accretion Rate」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Delivery of Gas onto the Circumplanetary Disk of Giant Planets: Planetary-mass Dependence of the Source Region of Accreting Gas and Mass Accretion Rate

Maeda, Natsuho Ohtsuki, Keiji Tanigawa, Takayuki Machida, Masahiro N. Suetsugu, Ryo 神戸大学

2022.08.01

概要

Gas accretion onto the circumplanetary disks and the source region of accreting gas are important to reveal dust accretion that leads to satellite formation around giant planets. We performed local three-dimensional high-resolution hydrodynamic simulations of an isothermal and inviscid gas flow around a planet to investigate the planetary-mass dependence of the gas accretion bandwidth and gas accretion rate onto circumplanetary disks. We examined cases with various planetary masses corresponding to M-p = 0.05-1M(Jup) at 5.2 au, where M-Jup is the current Jovian mass. We found that the radial width of the gas accretion band is proportional to M-p(1/6) for the low-mass regime with M-p less than or similar to 0.2M(Jup) while it is proportional to M-p for the high-mass regime with M-p greater than or similar to 0.2M(Jup). We found that the ratio of the mass accretion rate onto the circumplanetary disk to that into the Hill sphere is about 0.4 regardless of the planetary mass for the cases we examined. Combining our results with the gap model obtained from global hydrodynamic simulations, we derive a semi-analytical formula of mass accretion rate onto circumplanetary disks. We found that the mass dependence of our three-dimensional accretion rates is the same as the previously obtained two-dimensional case, although the qualitative behavior of accretion flow onto the circumplanetary disk is quite different between the two cases.

この論文で使われている画像

参考文献

Ayliffe, B. A., & Bate, M. R. 2009, MNRAS, 397, 657 Ayliffe, B. A., & Bate, M. R. 2012, MNRAS, 427, 2597

Batygin, K., & Morbidelli, A. 2020, ApJ, 894, 143

Benisty, M., Bae, J., Facchini, S., et al. 2021, ApJL, 916, L2 Bi, J., Lin, M.-K., & Dong, R. 2021, ApJ, 912, 107

Canup, R. M., & Ward, W. R. 2002, AJ, 124, 3404

Canup, R. M., & Ward, W. R. 2006, Natur, 441, 834

Cimerman, N. P., Kuiper, R., & Ormel, C. W. 2017, MNRAS, 471, 4662 D’Angelo, G., Henning, T., & Kley, W. 2003, ApJ, 599, 548

Fujita, T., Ohtsuki, K., Tanigawa, T., & Suetsugu, R. 2013, AJ, 146, 140 Fung, J., Artymowicz, P., & Wu, Y. 2015, ApJ, 811, 101

Fung, J., & Chiang, E. 2016, ApJ, 832, 105

Fung, J., Zhu, Z., & Chiang, E. 2019, ApJ, 887, 152

Ginski, C., Benisty, M., van Holstein, R. G., et al. 2018, A&A, 616, A79 Ginzburg, S., & Chiang, E. 2019, MNRAS, 487, 681

Gressel, O., Nelson, R. P., Turner, N. J., & Ziegler, U. 2013, ApJ, 779, 59 Hayashi, C. 1981, PThPS, 70, 35

Homma, T., Ohtsuki, K., Maeda, N., et al. 2020, ApJ, 903, 98 Isella, A., Benisty, M., Teague, R., et al. 2019, ApJL, 879, L25

Kanagawa, K. D., Muto, T., Tanaka, H., et al. 2015, ApJL, 806, L15 Kanagawa, K. D., Tanaka, H., Muto, T., & Tanigawa, T. 2017, PASJ, 69, 97 Kipping, D., Bryson, S., Burke, C., et al. 2022, NatAs, 6, 367

Kurokawa, H., & Tanigawa, T. 2018, MNRAS, 479, 635 Kusaka, T., Nakano, T., & Hayashi, C. 1970, PThPh, 44, 1580 Kuwahara, A., Kurokawa, H., & Ida, S. 2019, A&A, 623, A179

Lambrechts, M., Lega, E., Nelson, R. P., Crida, A., & Morbidelli, A. 2019, A&A, 630, A82

Liu, B., & Ji, J. 2020, RAA, 20, 164

Machida, M. N. 2009, MNRAS, 392, 514

Machida, M. N., Inutsuka, S.-i., & Matsumoto, T. 2006, ApJL, 649, L129 Machida, M. N., Kokubo, E., Inutsuka, S.-i., & Matsumoto, T. 2008, ApJ,

685, 1220

Machida, M. N., Kokubo, E., Inutsuka, S.-i., & Matsumoto, T. 2010, MNRAS, 405, 1227

Machida, M. N., Matsumoto, T., Hanawa, T., & Tomisaka, K. 2005, MNRAS, 362, 382

Morbidelli, A., Szulágyi, J., Crida, A., et al. 2014, Icar, 232, 266 Mori, S., Bai, X.-N., & Okuzumi, S. 2019, ApJ, 872, 98

Ormel, C. W., Shi, J.-M., & Kuiper, R. 2015, MNRAS, 447, 3512

Ronnet, T., & Johansen, A. 2020, A&A, 633, A93

Ronnet, T., Mousis, O., Vernazza, P., Lunine, J. I., & Crida, A. 2018, AJ, 155, 224

Schulik, M., Johansen, A., Bitsch, B., & Lega, E. 2019, A&A, 632, A118

Schulik, M., Johansen, A., Bitsch, B., Lega, E., & Lambrechts, M. 2020, A&A, 642, A187

Shakura, N. I., & Sunyaev, R. A. 1973, A&A, 24, 337

Shibaike, Y., Ormel, C. W., Ida, S., Okuzumi, S., & Sasaki, T. 2019, ApJ, 885, 79

Suetsugu, R., & Ohtsuki, K. 2017, ApJ, 839, 66

Suetsugu, R., Ohtsuki, K., & Fujita, T. 2016, AJ, 151, 140 Szulágyi, J., Binkert, F., & Surville, C. 2022, ApJ, 924, 1 Szulágyi, J., Masset, F., Lega, E., et al. 2016, MNRAS, 460, 2853 Szulágyi, J., Mayer, L., & Quinn, T. 2017, MNRAS, 464, 3158

Szulágyi, J., Morbidelli, A., Crida, A., & Masset, F. 2014, ApJ, 782, 65 Tanigawa, T., Maruta, A., & Machida, M. N. 2014, ApJ, 784, 109 Tanigawa, T., Ohtsuki, K., & Machida, M. N. 2012, ApJ, 747, 47 Tanigawa, T., & Tanaka, H. 2016, ApJ, 823, 48

Tanigawa, T., & Watanabe, S. 2002, ApJ, 580, 506 Teachey, A., & Kipping, D. M. 2018, SciA, 4, eaav1784

Tsukagoshi, T., Muto, T., Nomura, H., et al. 2019, ApJL, 878, L8 Wang, H.-H., Bu, D., Shang, H., & Gu, P.-G. 2014, ApJ, 790, 32

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る