リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Polarization consistent basis sets using the projector augmented wave method: a renovation brought by PAW into Gaussian basis sets」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Polarization consistent basis sets using the projector augmented wave method: a renovation brought by PAW into Gaussian basis sets

Phung, Quan Manh Hagai, Masaya Xiong, Xiao-Gen Yanai, Takeshi 名古屋大学

2020.12.14

概要

A recently introduced framework incorporating the Projector Augmented Wave method and Gauss-type function (GTF-PAW) [X.-G. Xiong and T. Yanai, J. Chem. Theory Comput., 2017, 13, 3236–3249] opens alternative possibilities for performing low-cost molecular computational chemistry calculations. In this work, we present our first attempt to expand the applicability of this method by developing a family of compact general contracted polarization consistent basis sets (PAW-Ln) as an optimized GTF basis in combination with PAW. The results show that PAW-Ln, despite having small numbers of primitives, can provide not only better performance than effective core potential (ECP) but also good accuracy and desirable systematic convergence compared to larger all-electron basis sets. This demonstrates that GTF-PAW using the PAW-Ln basis sets could be a better alternative to both conventional all-electron- and ECP-based approaches for routine DFT calculations.

関連論文

参考文献

1 A. D. Becke, J. Chem. Phys., 2014, 140, 18A301.

2 N. Mardirossian and M. Head-Gordon, Mol. Phys., 2017, 115, 2315–2372.

3 M. Arita, S. Arapan, D. R. Bowler and T. Miyazaki, J. Adv. Simul. Sci. Eng., 2014, 1, 87–97.

4 D. R. Bowler and T. Miyazaki, J. Phys. Condens. Matter, 2010, 22, 074207.

5 E. Artacho, D. Sánchez-Portal, P. Ordejón, A. Garcia and J. M. Soler, Phys. Status Solidi B, 1999, 215, 809–817.

6 C. F. Guerra, J. Snijders, G. t. te Velde and E. J. Baerends, Theor. Chem. Acc., 1998, 99, 391–403.

7 C.-K. Skylaris, P. D. Haynes, A. A. Mostofi and M. C. Payne, J. Chem. Phys., 2005, 122, 084119.

8 C. Ochsenfeld, C. A. White and M. Head-Gordon, J. Chem. Phys., 1998, 109, 1663–1669.

9 J. Kussmann, M. Beer and C. Ochsenfeld, Wiley Interdiscip. Rev. Comput. Mol. Sci., 2013, 3, 614–636.

10 E. Schwegler and M. Challacombe, J. Chem. Phys., 1996, 105, 2726–2734.

11 F. Aquilante, T. B. Pedersen and R. Lindh, J. Chem. Phys.,2007, 126, 194106.

12 E. Rudberg, E. H. Rubensson and P. Sałek, J. Chem. Phys.,2008, 128, 184106.

13 J. C. Burant, G. E. Scuseria and M. J. Frisch, J. Chem. Phys.,1996, 105, 8969–8972.

14 G. E. Scuseria, J. Phys. Chem. A, 1999, 103, 4782–4790.

15 X. He and K. M. Merz Jr, J. Chem. Theory Comput., 2010, 6,405–411.

16 C. Ochsenfeld, Chem. Phys. Lett., 2000, 327, 216–223.

17 J. L. Whitten, J. Chem. Phys., 1973, 58, 4496–4501.

18 K. Eichkorn, F. Weigend, O. Treutler and R. Ahlrichs, Theor.Chem. Acc., 1997, 97, 119–124.

19 K. Eichkorn, O. Treutler, H. Öhm, M. Häser and R. Ahlrichs,Chem. Phys. Lett., 1995, 240, 283–290.

20 R. A. Kendall and H. A. Früchtl, Theor. Chem. Acc., 1997, 97,158–163.

21 B. I. Dunlap, J. Connolly and J. Sabin, J. Chem. Phys., 1979,71, 3396–3402.

22 F. Neese, J. Comput. Chem., 2003, 24, 1740–1747.

23 F. Neese, F. Wennmohs, A. Hansen and U. Becker, Chem.Phys., 2009, 356, 98–109.

24 C. Köppl and H.-J. Werner, J. Chem. Theory Comput., 2016,12, 3122–3134.

25 D. Hamann, M. Schlüter and C. Chiang, Phys. Rev. Lett.,1979, 43, 1494.

26 L. Kleinman and D. Bylander, Phys. Rev. Lett., 1982, 48,1425.

27 D. Vanderbilt, Phys. Rev. B, 1990, 41, 7892.

28 G. Kresse and D. Joubert, Phys. Rev. B, 1999, 59, 1758.

29 N. Troullier and J. L. Martins, Phys. Rev. B, 1991, 43, 1993.

30 S. Goedecker, M. Teter and J. Hutter, Phys. Rev. B, 1996, 54,1703.

31 M. Dolg, H. Stoll, A. Savin and H. Preuss, Theor. Chim. Acta,1989, 75, 173–194.

32 D. Andrae, U. Haeussermann, M. Dolg, H. Stoll andH. Preuss, Theor. Chim. Acta, 1990, 77, 123–141.

33 M. Dolg, U. Wedig, H. Stoll and H. Preuss, J. Chem. Phys.,1987, 86, 866–872.

34 W. R. Wadt and P. J. Hay, J. Chem. Phys., 1985, 82, 284–298.

35 P. J. Hay and W. R. Wadt, J. Chem. Phys., 1985, 82, 270–283.

36 P. J. Hay and W. R. Wadt, J. Chem. Phys., 1985, 82, 299–310.

37 J. Trail and R. Needs, J. Chem. Phys., 2005, 122, 174109.

38 J. Trail and R. Needs, J. Chem. Phys., 2013, 139, 014101.

39 J. R. Trail and R. J. Needs, J. Chem. Phys., 2017, 146,204107.

40 M. C. Bennett, C. A. Melton, A. Annaberdiyev, G. Wang,L. Shulenburger and L. Mitas, J. Chem. Phys., 2017, 147,

41 M. C. Bennett, G. Wang, A. Annaberdiyev, C. A. Melton, L. Shulenburger and L. Mitas, The Journal of chemical physics, 2018, 149, 104108.

42 A. Annaberdiyev, G. Wang, C. A. Melton, M. C. Bennett, L. Shulenburger and L. Mitas, J. Chem. Phys., 2018, 149, 134108.

43 G. Wang, A. Annaberdiyev, C. A. Melton, M. C. Bennett, L. Shulenburger and L. Mitas, J. Chem. Phys., 2019, 151, 144110.

44 J. C. Slater, Phys. Rev., 1937, 51, 846–851.

45 O. K. Andersen, Phys. Rev. B, 1975, 12, 3060–3083.

46 P. E. Blöchl, Phys. Rev. B, 1994, 50, 17953.

47 T. Charpentier, Solid State Nucl. Magn. Reson., 2011, 40, 1–20.

48 G. Kresse and J. Furthmüller, Phys. Rev. B, 1996, 54, 11169.

49 X. Gonze, B. Amadon, G. Antonius, F. Arnardi, L. Baguet, J.-M. Beuken, J. Bieder, F. Bottin, J. Bouchet, E. Bousquet et al., Comput. Phys. Commun., 2020, 248, 107042.

50 S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. I. Probert, K. Refson and M. C. Payne, Z. Kristallogr. Cryst. Mater., 2005, 220, 567–570.

51 P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo et al., J. Phys. Condens. Matter, 2009, 21, 395502.

52 J. e. Enkovaara, C. Rostgaard, J. J. Mortensen, J. Chen, M. Dułak, L. Ferrighi, J. Gavnholt, C. Glinsvad, V. Haikola, H. Hansen et al., J. Phys. Condens. Matter, 2010, 22, 253202.

53 T. Rangel, D. Caliste, L. Genovese and M. Torrent, Comput. Phys. Commun., 2016, 208, 1–8.

54 S. Kang, S. Ryu, S. Choi, J. Kim, K. Hong and W. Y. Kim, International Journal of Quantum Chemistry, 2016, 116, 644– 650.

55 M. Dolg et al., Modern methods and algorithms of quantum chemistry, 2000, 3, 507–540.

56 J. C. Phillips and L. Kleinman, Phys. Rev., 1959, 116, 287– 294.

57 M. L. Cohen and T. K. Bergstresser, Phys. Rev., 1966, 141, 789–796.

58 D. R. Hamann, M. Schlüter and C. Chiang, Phys. Rev. Lett., 1979, 43, 1494–1497.

59 D. R. Hamann, Phys. Rev. B, 2013, 88, 085117.

60 S. Goedecker, M. Teter and J. Hutter, Phys. Rev. B, 1996, 54,1703–1710.

61 D. Vanderbilt, Phys. Rev. B, 1990, 41, 7892–7895.

62 X.-G. Xiong and T. Yanai, J. Chem. Theory Comput., 2017,13, 3236–3249.

63 M. Torrent, F. Jollet, F. Bottin, G. Zérah and X. Gonze, Comp.Mat. Sci., 2008, 42, 337–351.

64 M. Torrent, N. Holzwarth, F. Jollet, D. Harris, N. Lepley andX. Xu, Comp. Phys. Comm., 2010, 181, 1862–1867.

65 N. Holzwarth, A. Tackett and G. Matthews, Comp. Phys.Comm., 2001, 135, 329–347.

66 F. Jollet, M. Torrent and N. Holzwarth, Comput. Phys. Commun., 2014, 185, 1246–1254.

67 X.-G. Xiong, A. Sugiura and T. Yanai, Journal of ChemicalTheory and Computation, 2020, 16, 4883–4898.

68 A. D. Becke, J. Chem. Phys., 1988, 88, 2547–2553.

69 F. Jensen, J. Chem. Phys., 2001, 115, 9113–9125.

70 F. Jensen, J. Chem. Phys., 2002, 116, 7372–7379.

71 F. Jensen, J. Chem. Phys., 2002, 117, 9234–9240.

72 F. Jensen and T. Helgaker, J. Chem. Phys., 2004, 121, 3463–3470.

73 F. Jensen, J. Phys. Chem. A, 2007, 111, 11198–11204.

74 K. F. Garrity, J. W. Bennett, K. M. Rabe and D. Vanderbilt,Comput. Mater. Sci., 2014, 81, 446–452.

75 A. Dal Corso, Comput. Mater. Sci., 2014, 95, 337–350.

76 T. Yanai, Y. Kurashige, W. Mizukami, J. Chalupský, T. N. Lanand M. Saitow, Int. J. Quantum Chem., 2015, 115, 283–299.

77 P. A. M. Dirac, Proc. R. Soc. Lond., 1929, 123, 714–733.

78 J. C. Slater, Phys. Rev., 1951, 81, 385.

79 S. H. Vosko, L. Wilk and M. Nusair, Can. J. Phys., 1980, 58, 1200–1211.

80 NIST Computational Chemistry Comparison and Benchmark Database, http://cccbdb.nist.gov/, (Release 20, August 2019).

81 X. Gonze, P. Käckell and M. Scheffler, Phys. Rev. B, 1990, 41, 12264.

82 F. Neese, Wiley Interdiscip. Rev. Comput. Mol. Sci., 2018, 8, e1327.

83 F. Jensen, Chem. Phys. Lett., 2005, 402, 510–513.

84 R. D. Bardo and K. Ruedenberg, J. Chem. Phys., 1974, 60, 918–931.

85 F. Jensen, J. Phys. Chem. A, 2017, 121, 6104–6107.

86 R. C. Raffenetti, J. Chem. Phys., 1973, 58, 4452–4458.

87 F. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys., 2005,7, 3297–3305.

88 T. H. Dunning Jr, J. Chem. Phys., 1989, 90, 1007–1023.

89 B. P. Prascher, D. E. Woon, K. A. Peterson, T. H. Dunning and A. K. Wilson, Theor. Chem. Acc., 2011, 128, 69–82.

90 D. E. Woon and T. H. Dunning Jr, J. Chem. Phys., 1993, 98, 1358–1371.

91 J. S. Binkley and J. A. Pople, J. Chem. Phys., 1977, 66, 879– 880.

92 J. D. Dill and J. A. Pople, J. Chem. Phys., 1975, 62, 2921– 2923.

93 R. Ditchfield, W. J. Hehre and J. A. Pople, J. Chem. Phys., 1971, 54, 724–728.

94 M. M. Francl, W. J. Pietro, W. J. Hehre, J. S. Binkley, M. S. Gordon, D. J. DeFrees and J. A. Pople, J. Chem. Phys., 1982, 77, 3654–3665.

95 M. S. Gordon, J. S. Binkley, J. A. Pople, W. J. Pietro and W. J. Hehre, J. Am. Chem. Soc., 1982, 104, 2797–2803.

96 P. C. Hariharan and J. A. Pople, Theor. Chim. Acta, 1973, 28, 213–222.

97 W. J. Hehre, R. Ditchfield and J. A. Pople, J. Chem. Phys., 1972, 56, 2257–2261.

98 F. Jensen, J. Chem. Theory Comput., 2014, 10, 1074–1085.

99 B. P. Pritchard, D. Altarawy, B. Didier, T. D. Gibson and T. L. Windus, J. Chem. Inf. Model., 2019, 59, 4814–4820.

100 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, Gaussian 16 Revision C.01, 2016, Gaussian Inc. Wallingford CT.

101 A. McLean and G. Chandler, J. Chem. Phys., 1980, 72, 5639– 5648.

102 R. Krishnan, J. S. Binkley, R. Seeger and J. A. Pople, J. Chem. Phys., 1980, 72, 650–654.

103 L. A. Curtiss, K. Raghavachari, P. C. Redfern and J. A. Pople, J. Chem. Phys., 1997, 106, 1063–1079.

104 L. A. Curtiss, P. C. Redfern, K. Raghavachari and J. A. Pople, J. Chem. Phys., 1998, 109, 42–55.

105 P. Jureˇcka, J. Šponer, J. Cern ˇ `y and P. Hobza, Phys. Chem. Chem. Phys., 2006, 8, 1985–1993.

106 R. Ahlrichs, M. Bär, M. Häser, H. Horn and C. Kölmel, Chem. Phys. Lett., 1989, 162, 165–169.

107 J. Hermann, Berny - Molecular Optimizer, https://github. com/jhrmnn/pyberny, 2020.

108 A. Bergner, M. Dolg, W. Küchle, H. Stoll and H. Preuß, Mol. Phys., 1993, 80, 1431–1441.

109 P. Fuentealba, H. Preuss, H. Stoll and L. Von Szentpály, Chem. Phys. Lett., 1982, 89, 418–422.

110 P. Fuentealba, L. Von Szentpaly, H. Preuss and H. Stoll, J. Phys. B, 1985, 18, 1287.

111 N. P. Labello, A. M. Ferreira and H. A. Kurtz, Int. J. Quantum Chem., 2006, 106, 3140–3148.

112 W. J. Stevens, H. Basch and M. Krauss, J. Chem. Phys., 1984, 81, 6026–6033.

113 M. P. Waller, H. Braun, N. Hojdis and M. Bühl, J. Chem. Theory Comput., 2007, 3, 2234–2242.

114 X. Xu and D. G. Truhlar, J. Chem. Theory Comput., 2012, 8, 80–90.

115 C. Janfelt and F. Jensen, Chem. Phys. Lett., 2005, 406, 501– 503.

116 F. Jensen and C. Janfelt, Chem. Phys. Lett., 2005, 412, 12– 15.

117 D. Peng and M. Reiher, Theor. Chem. Acc., 2012, 131, 1081.

118 J. C. Kromann, Calculate Root-Mean-Square Deviation (RMSD) of Two Molecules Using Rotation, http://github. com/charnley/rmsd, 2020.

119 W. Kabsch, Acta Crystallogr. A, 1976, 32, 922–923.

120 C. Lee, W. Yang and R. G. Parr, Phys. Rev. B, 1988, 37, 785– 789.

121 T. H. Dunning Jr, K. A. Peterson and A. K. Wilson, J. Chem. Phys., 2001, 114, 9244–9253.

122 N. X. Wang and A. K. Wilson, J. Phys. Chem. A, 2005, 109, 7187–7196.

123 B. P. Prascher and A. K. Wilson, Mol. Phys., 2007, 105, 2899– 2917.

124 A. Mahler, J. J. Determan and A. K. Wilson, J. Chem. Phys., 2019, 151, 064110.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る