リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Orbital-free density functional theory: Differences and similarities between electronic and nuclear systems」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Orbital-free density functional theory: Differences and similarities between electronic and nuclear systems

Colò, Gianluca Hagino, Kouichi 京都大学 DOI:10.1093/ptep/ptad118

2023.10

概要

Orbital-free density functional theory (OF-DFT) has been used when studying atoms, molecules, and solids. In nuclear physics, applications of OF-DFT have been quite scarce so far, as DFT has been widely applied to the study of many nuclear properties mostly within the Kohn–Sham (KS) scheme. There are many realizations of nuclear KS-DFT, but computations become very demanding for heavy systems, such as superheavy nuclei and the inner crust of neutron stars, and it is hard to describe exotic nuclear shapes using a finite basis made with a limited number of orbitals. These bottlenecks could, in principle, be overcome by an orbital-free formulation of DFT. This work is a first step towards the realistic application of OF-DFT to nuclei. In particular, we have implemented possible choices for an orbital-free kinetic energy and solved the associated Schrödinger equation either with simple potentials or with simplified nuclear density functionals. While the former choice sheds light on the differences between electronic and nuclear systems, the latter choice allows us to discuss the practical applications to nuclei as well as open questions.

関連論文

参考文献

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

M. Levy, J. P. Perdew, and V. Sahni, Phys. Rev. A 30, 2745 (1984).

P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).

W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).

H. Chen and A. Zhou, Numer. Math. Theory Meth. Appl. 1, 1 (2008).

V. V. Karasiev and S. B. Trickey, Comput. Phys. Commun. 183, 2519 (2012).

W. C. Witt, B. G. Del Rio, J. M. Dieterich, and E. A. Carter, J. Mater. Res. 33, 777 (2018).

P. Golub and S. Manzhos, Comput. Phys. Commun. 256, 107365 (2020).

K. Jiang and M. Pavanello, Phys. Rev. B 103, 245102 (2021).

A. Bulgac, M. M. N. Forbes, S. Jin, R. N. Perez, and N. Schunck, Phys. Rev. C 97, 044313 (2018).

M. Brack, C. Guet, and H.-B. Håkansson, Phys. Rep. 123, 275 (1985).

M. Centelles, M. Pi, X. Viñas, F. Garcias, and M. Barranco, Nucl. Phys. A 510, 397 (1990).

A. K. Dutta, J.-P. Arcoragi, J. M. Pearson, R. Behrman, and F. Tondeur, Nucl. Phys. A 458, 77

(1986).

[13] F. Tondeur, A. K. Dutta, J. M. Pearson, and R. Behrman, Nucl. Phys. A 470, 93 (1987).

10/11

Downloaded from https://academic.oup.com/ptep/article/2023/10/103D01/7279479 by Kyoto University Medical Library user on 26 January 2024

The total energy can be written in a useful form by exploiting the fact that

1 ∂ρ

∇ ρ= √ ∇ρ=

er .

2 ρ

2ρ ∂r

In this way,

 

 2 2/3 5/3

1 ∂ρ 2

δV

2

2

3 3

E =β

d r

d r

ρ + d 3r

2m

4ρ ∂r

2m

δρ

 2

 2 2/3 5/3

δV

∂ρ

2

2

2 1

23

ρ.

d r 4π r

d r 4π r

ρ + dr 4π r2

2m

4ρ ∂r

2m

δρ

PTEP 2023, 103D01

G. Colò and K. Hagino

© The Author(s) 2023. Published by Oxford University Press on behalf of the Physical Society of Japan. This is an Open Access article distributed under the terms of the Creative

Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work

is properly cited.

11/11

Downloaded from https://academic.oup.com/ptep/article/2023/10/103D01/7279479 by Kyoto University Medical Library user on 26 January 2024

[14] J. M. Pearson, Y. Aboussir, A. K. Dutta, R. C. Nayak, M. Farine, and F. Tondeur, Nucl. Phys. A

528, 1 (1991).

[15] Y. Aboussir, J. M. Pearson, A. K. Dutta, and F. Tondeur, Nucl. Phys. A 549, 155 (1992).

[16] A. Mamdouh, J. M. Pearson, M. Rayet, and F. Tondeur, Nucl. Phys. A 679, 337 (2001).

[17] J. Wu, R. Feng, and W. Nörenberg, Phys. Lett. B 209, 430 (1988).

[18] O. Bohigas, X. Campi, H. Krivine, and J. Treiner, Phys. Lett. B 64, 381 (1976).

[19] E. H. Lieb, Rev. Mod. Phys. 48, 553 (1976).

[20] E. Lieb, in Mathematical Problems in Theoretical Physics, ed. K. Osterwalder (Springer, Berlin,

1980), pp 91–102.

[21] B. K. Agrawal, S. Shlomo, and A. I. Sanzhur, Phys. Rev. C 67, 034314 (2003).

[22] C. Yannouleas and U. Landman, in Recent Advances in Orbital-Free Density Functional Theory,

eds. Y. A. Wangand T. A. Wesolowski (World Scientific, Singapore, 2013), p. 203.

[23] C. Yannouleas and U. Landman, Chem. Phys. Lett. 210, 437 (1993).

[24] C. Yannouleas and U. Landman, Phys. Rev. B 48, 8376 (1993).

[25] B. Zhou and Y. A. Wang, J. Chem. Phys. 124, 81107 (2006).

[26] N. Hizawa, K. Hagino, and K. Yoshida, Phys. Rev. C 108, 034311 (2023).

[27] M. S. Ryley, M. Withnall, T. J. P. Irons, T. Helgaker, and A. M. Teale, J. Phys. Chem. A 125, 459

(2021).

[28] F. Imoto, M. Imada, and A. Oshiyama, Phys. Rev. Res. 3, 033198 (2021).

[29] X. H. Wu, Z. X. Ren, and P. W. Zhao, Phys. Rev. C 105, L031303 (2022).

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る