リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Myogenetic Oligodeoxynucleotide Induces Myocardial Differentiation of Murine Pluripotent Stem Cells」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Myogenetic Oligodeoxynucleotide Induces Myocardial Differentiation of Murine Pluripotent Stem Cells

Ishioka, Mina Nihashi, Yuma Sunagawa, Yoichi Umezawa, Koji Shimosato, Takeshi Kagami, Hiroshi Morimoto, Tatsuya Takaya, Tomohide 信州大学 DOI:10.3390/ijms241814380

2023.09.25

概要

An 18-base myogenetic oligodeoxynucleotide (myoDN), iSN04, acts as an anti-nucleolin aptamer and induces myogenic differentiation of skeletal muscle myoblasts. This study investigated the effect of iSN04 on murine embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). In the undifferentiated state, iSN04 inhibited the proliferation of ESCs and iPSCs but did not affect the expression of pluripotent markers. In the differentiating condition, iSN04 treatment of ESCs/iPSCs from day 5 onward dramatically induced differentiation into Nkx2-5+ beating cardiomyocytes with upregulation of Gata4, Isl1, and Nkx2-5, whereas iSN04 treatment from earlier stages completely inhibited cardiomyogenesis. RNA sequencing revealed that iSN04 treatment from day 5 onward contributes to the generation of cardiac progenitors by modulating the Wnt signaling pathway. Immunostaining showed that iSN04 suppressed the cytoplasmic translocation of nucleolin and restricted it to the nucleoli. These results demonstrate that nucleolin inhibition by iSN04 facilitates the terminal differentiation of cardiac mesoderm into cardiomyocytes but interferes with the differentiation of early mesoderm into the cardiac lineage. This is the first report on the generation of cardiomyocytes from pluripotent stem cells using a DNA aptamer. Since iSN04 did not induce hypertrophic responses in primary-cultured cardiomyocytes, iSN04 would be useful and safe for the regenerative therapy of heart failure using stem cell-derived cardiomyocytes.

関連論文

参考文献

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

Dogan, A. Embryonic stem cells in development and regenerative medicine. Adv. Exp. Med. Biol. 2018, 1079, 1–15.

Takahashi, K.; Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined

factors. Cell 2006, 126, 663–676. [CrossRef]

Takahashi, K.; Tanabe, K.; Ohnuki, M.; Narita, M.; Ichisaka, T.; Tomoda, K.; Yamanaka, S. Induction of pluripotent stem cells from

adult human fibroblasts by defined factors. Cell 2007, 131, 861–872. [CrossRef] [PubMed]

Wang, T.; Chen, C.; Larcher, L.M.; Barrero, R.A.; Veedu, R.N. Three decades of nucleic acid aptamer technologies: Lessons learned,

progress and opportunities on aptamer development. Biotechnol. Adv. 2019, 37, 28–50. [CrossRef] [PubMed]

Ueki, R.; Atsuta, S.; Ueki, A.; Hoshiyama, J.; Li, J.; Hayashi, Y.; Sando, S. DNA aptamer assemblies as fibroblast growth factor

mimics and their application in stem cell culture. Chem. Commun. 2019, 55, 2672–2675. [CrossRef]

Shinji, S.; Umezawa, K.; Nihashi, Y.; Nakamura, S.; Shimosato, T.; Takaya, T. Identification of the myogenetic oligodeoxynucleotides (myoDNs) that promote differentiation of skeletal muscle myoblasts by targeting nucleolin. Front. Cell Dev. Biol. 2021,

8, 616706. [CrossRef] [PubMed]

Nakamura, S.; Yonekura, S.; Shimosato, T.; Takaya, T. Myogenetic oligodeoxynucleotide (myoDN) recovers the differentiation of

skeletal muscle myoblasts deteriorated by diabetes mellitus. Front. Physiol. 2021, 12, 679152. [CrossRef] [PubMed]

Nihashi, Y.; Shinji, S.; Umezawa, K.; Shimosato, T.; Ono, T.; Kagami, H.; Takaya, T. Myogenetic oligodeoxynucleotide complexed

with berberine promotes differentiation of chicken myoblasts. Anim. Sci. J. 2021, 92, e13597. [CrossRef]

Nihashi, Y.; Yamamoto, M.; Shimosato, T.; Takaya, T. Myogenetic oligodeoxynucleotide restores differentiation and reverses

inflammation of myoblasts aggravated by cancer-conditioned medium. Muscles 2022, 1, 111–120. [CrossRef]

Nohira, S.; Shinji, S.; Nakamura, Y.; Nihashi, Y.; Shimosato, T.; Takaya, T. Myogenetic oligodeoxynucleotides as anti-nucleolin

aptamers inhibit the growth of embryonal rhabdomyosarcoma cells. Biomedicines 2022, 10, 2691. [CrossRef]

Jia, W.; Yao, Z.; Zhao, J.; Guan, Q.; Gao, L. New perspectives of physiological and pathological functions of nucleolin (NCL). Life

Sci. 2017, 186, 1–10. [CrossRef] [PubMed]

Laurincik, J.; Bjerregaard, B.; Strejcek, F.; Rath, D.; Niemann, H.; Rosenkranz, C.; Ochs, R.L.; Maddox-Hyttel, P. Nucleolar

ultrastructure and protein allocation in in vitro produced porcine embryos. Mol. Reprod. Dev. 2004, 68, 327–334. [CrossRef]

[PubMed]

Li, H.; Wang, B.; Yang, A.; Lu, R.; Wang, W.; Zhou, Y.; Shi, G.; Kwon, S.W.; Zhao, Y.; Jin, Y. Ly-1 antibody reactive clone is an

important nucleolar protein for control of self-renewal and differentiation in embryonic stem cells. Stem Cells 2009, 27, 1244–1254.

[CrossRef] [PubMed]

Johansson, H.; Svensson, F.; Runnberg, R.; Simonsson, T.; Simonsson, S. Phosphorylated nucleolin interacts with translationally

controlled tumor protein during mitosis and with Oct4 during interphase in ES cells. PLoS ONE 2010, 5, e13678. [CrossRef]

Yang, A.; Shi, G.; Zhou, C.; Lu, R.; Li, H.; Sun, L.; Jin, Y. Nucleolin maintains embryonic stem cell self-renewal by suppression of

p53 protein-dependent pathway. J. Biol. Chem. 2011, 286, 43370–43382. [CrossRef]

Percharde, M.; Lin, C.J.; Yin, Y.; Guan, J.; Peixoto, G.A.; Bulut-Karslioglu, A.; Biechele, S.; Huang, B.; Shen, X.; Ramalho-Santos, M.

A LINE1-nucleolin partnership regulates early development and ESC identity. Cell 2018, 174, 391–405. [CrossRef]

Int. J. Mol. Sci. 2023, 24, 14380

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

16 of 17

Okita, K.; Ichisaka, T.; Yamanaka, S. Generation of germline-competent induced pluripotent stem cells. Nature 2007, 488, 313–317.

[CrossRef]

Hidaka, K.; Lee, J.K.; Kim, H.S.; Ihm, C.H.; Iio, A.; Ogawa, M.; Nishikawa, S.; Kodama, I.; Morisaki, T. Chamber-specific

differentiation of Nkx2.5-positive cardiac precursor cells from murine embryonic stem cells. FASEB J. 2003, 17, 740–742. [CrossRef]

Kaichi, S.; Takaya, T.; Morimoto, T.; Sunagawa, Y.; Kawamura, T.; Ono, K.; Shimatsu, A.; Baba, S.; Heike, T.; Nakahata, T.; et al.

Cyclin-dependent kinase 9 forms a complex with GATA4 and is involved in the differentiation of mouse ES cells into cardiomyocytes. J. Cell. Physiol. 2011, 226, 248–254. [CrossRef]

Narita, S.; Unno, K.; Kato, K.; Okuno, Y.; Sato, Y.; Tsumura, Y.; Fujikawa, Y.; Shimizu, Y.; Hayashida, R.; Kondo, K.; et al. Direct

reprogramming of adult adipose-derived regenerative cells toward cardiomyocytes using six transcriptional factors. iScience

2022, 25, 104651. [CrossRef]

Mercola, M.; Ruiz-Lozano, P.; Schneider, M.D. Cardiac muscle regeneration: Lessons from development. Genes. Dev. 2011, 25,

299–309. [CrossRef] [PubMed]

Nusse, R.; Clevers, H. Wnt/β-catenin signaling, disease, and emerging therapeutic modalities. Cell 2017, 169, 989–999.

Mazzotta, S.; Neves, C.; Bonner, R.J.; Bernardo, A.S.; Docherty, K.; Hoppler, S. Distinctive roles of canonical and noncanonical

Wnt signaling in human embryonic cardiomyocyte development. Stem Cell Rep. 2016, 7, 764–776. [CrossRef] [PubMed]

Schmeckpeper, J.; Verma, A.; Yin, L.; Beigi, F.; Zhang, L.; Payne, A.; Zhang, Z.; Pratt, R.E.; Dzau, V.J.; Mirotsou, M. Inhibition of

Wnt6 by Sfrp2 regulates adult cardiac progenitor cell differentiation by differential modulation of Wnt pathways. J. Mol. Cell.

Cardiol. 2015, 85, 215–225. [CrossRef] [PubMed]

Mukherjee, S.; Luedeke, D.M.; McCoy, L.; Iwafuchi, M.; Zorn, A.M. SOX transcription factors direct TCF-independent WNT/betacatenin responsive transcription to govern cell fate in human pluripotent stem cells. Cell Rep. 2022, 40, 111247. [CrossRef]

[PubMed]

Naito, T.A.; Shiojima, I.; Akazawa, H.; Hidaka, K.; Morisaki, T.; Kikuchi, A.; Komuro, I. Developmental stage-specific biphasic

roles of Wnt/β-catenin signaling in cardiomyogenesis and hematopoiesis. Proc. Natl. Acad. Sci. USA 2006, 103, 19812–19817.

[CrossRef]

Frey, N.; Katus, H.A.; Olson, E.N.; Hill, J.A. Hypertrophy of the heart: A new therapeutic target? Circulation 2004, 109, 1580–1589.

[CrossRef]

Lei, H.; Hu, J.; Sun, K.; Xu, D. The role and molecular mechanism of epigenetics in cardiac hypertrophy. Heart Fail. Rev. 2020, 26,

1505–1514. [CrossRef]

D’Amato, G.; Luxan, G.; de la Pmpa, J.L. Notch signalling in ventricular chamber development and cardiomyopathy. FEBS J.

2016, 283, 4223–4237. [CrossRef]

Tajbakhsh, S. Skeletal muscle stem cells in developmental versus regenerative myogenesis. J. Intern. Med. 2009, 266, 372–389.

[CrossRef]

Mizuno, Y.; Chang, H.; Umeda, K.; Niwa, A.; Iwasa, T.; Awaya, T.; Fukada, S.; Yamamoto, H.; Yamanaka, S.; Nakahata, T.; et al.

Generation of skeletal muscle stem/progenitor cells from murine induced pluripotent stem cells. FASEB J. 2010, 24, 2245–2253.

[CrossRef]

Mummery, C.L.; Zhang, J.; Ng, E.S.; Elliott, D.A.; Elefanty, A.G.; Kamp, T.J. Differentiation of human embryonic stem cells and

induced pluripotent stem cells to cardiomyocytes: A methods overview. Circ. Res. 2012, 111, 344–358. [CrossRef] [PubMed]

Reister, S.; Mahotka, C.; van den Hofel, N.; Grinstein, E. Nucleolin promotes Wnt signaling in human hematopoietic

stem/progenitor cells. Leukemia 2019, 33, 1052–1054. [CrossRef] [PubMed]

Yamamoto, M.; Miyoshi, M.; Morioka, K.; Mitani, T.; Takaya, T. Anti-nucleolin aptamer, iSN04, inhibits the inflammatory

responses in C2C12 myoblasts by modulating the β-catenin/NF-κB signaling pathway. Biochem. Biophys. Res. Commun. 2023, 664,

1–8. [CrossRef]

Liu, J.J.; Shentu, L.M.; Ma, N.; Wang, L.Y.; Zhang, G.M.; Sun, Y.; Wang, Y.; Li, J.; Mu, Y.L. Inhibition of NF-κB and Wnt/βcatenin/GSK3β signaling pathways ameliorates cardiomyocyte hypertrophy and fibrosis in streptozotocin (STZ)-induced type 1

diabetic rats. Curr. Med. Sci. 2020, 40, 35–47. [CrossRef]

Nihashi, Y.; Miyoshi, M.; Umezawa, K.; Shimosato, T.; Takaya, T. Identification of a novel osteogenetic oligodeoxynucleotide

(osteoDN) that promotes osteoblast differentiation in a TLR9-independent manner. Nanomaterials 2022, 12, 1680. [CrossRef]

Babicki, S.; Arndt, D.; Marcu, A.; Liang, Y.; Grant, J.R.; Maciejewski, A.; Wishart, D.S. Heatmapper: Web-enabled heat mapping

for all. Nucleic Acid. Res. 2016, 44, W147–W153. [CrossRef] [PubMed]

Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics

resources. Nat. Protoc. 2009, 4, 44–57. [CrossRef]

Takaya, T.; Kawamura, T.; Morimoto, T.; Ono, K.; Kita, T.; Shimatsu, A.; Hasegawa, K. Identification of p300-targeted acetylated

residues in GATA4 during hypertrophic responses in cardiac myocytes. J. Biol. Chem. 2008, 283, 9828–9835. [CrossRef]

Liu, W.; Brown, K.; Legros, S.; Foley, A.C. Nodal mutant eXtraembryonic ENdoderm (XEN) stem cells upregulate markers for

the anterior visceral endoderm and impact the timing of cardiac differentiation in mouse embryoid bodies. Biol. Open 2012, 1,

208–219. [CrossRef]

Int. J. Mol. Sci. 2023, 24, 14380

41.

42.

17 of 17

Sakurai, H.; Okawa, Y.; Inami, Y.; Nishio, N.; Isobe, K. Paraxial mesodermal progenitors derived from mouse embryonic stem

cells contribute to muscle regeneration via differentiation into muscle satellite cells. Stem Cells 2008, 26, 1865–1873. [CrossRef]

[PubMed]

Wang, T.; McDonald, C.; Petrenko, N.B.; Leblanc, M.; Wang, T.; Giguere, V.; Evans, R.M.; Patel, V.V.; Pei, L. Estrogen-related

receptor α (ERRα) and ERRγ are essential coordinators of cardiac metabolism and function. Mol. Cell. Biol. 2015, 35, 1281–1298.

[CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る