リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Tropical Cyclones Affecting Japan Central Coast and Changing Storm Surge Hazard since 1980」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Tropical Cyclones Affecting Japan Central Coast and Changing Storm Surge Hazard since 1980

ISLAM Md. Rezuanul TAKAGI Hiroshi 東京工業大学 DOI:https://doi.org/10.2151/jmsj.2022-024

2022.06

概要

This study investigated tidal records and landfall tropical cyclone (TC) best tracks from 1980 to 2019 to determine changes in storm surge heights in coastal regions of Central Japan, including Tokyo. The results indicate that annual mean storm surge heights have increased in the last 20 years (2000–2019) compared with those in 1980–1999, and that these changes are noteworthy, particularly in Tokyo Bay. The TC wind intensity and size during landfall have become stronger and larger, respectively, corresponding to increasing storm surge magnitudes from 1980 to 2019. The increased frequency of TCs with more northeastward tracks is another factor that may have contributed to the increased surge hazards around Tokyo. Additionally, a positive correlation between surge heights and a hazard index supports these statistical findings. The central coast of Japan will likely experience increasing numbers of extreme storm surge events in the future if the current increasing tendency continues.

この論文で使われている画像

参考文献

Blake, E. S., T. B. Kimberlain, R. J. Berg, J. P. Cangialosi, and J. L. Beven II, 2013: Tropical cyclone report Hurricane Sandy (AL182012) 22–29 October 2012. National Weather Service, National Hurricane Center, 157 pp. [Available at https://www.nhc.noaa.gov/data/tcr/AL182012_Sandy.pdf.]

Bromirski, P. D., R. E. Flick, and D. R. Cayan, 2003: Storminess variability along the California Coast: 1858–2000. J. Climate, 16, 982-993.

Brown, S., R. J. Nicholls, C. D. Woodroffe, S. Hanson, J. Hinkel, A. S. Kebede, B. Neumann, and A. T. Vafeidis, 2013: Sea-level rise impacts and responses: A global perspective. Coastal Hazards. Finkl, C. (ed.), Coastal Research Library, Springer, Dordrecht, 117-149.

Chan, J. C. L., 2015: Observed variations of western North Pacific tropical cyclone activity on decadal time scales and longer. Climate Change: Multidecadal and Beyond. Chang, C.-P., M. Ghil, M. Latif, and J. M. Wallace (eds.), World Scientific Publishing, 303-313.

Chan, K. T. F., 2019: Are global tropical cyclones moving slower in a warming climate? Environ. Res. Lett., 14, 104015, doi:10.1088/1748-9326/ab4031.

Chavas, D., E. Yonekura, C. Karamperidou, N. Cavanaugh, and K. Serafin, 2013: U.S. hurricanes and economic damage: Extreme value perspective. Nat. Hazards Rev., 14, 237-246.

Church, J. A., J. R. Hunter, K. L. McInnes, and N. J. White, 2006: Sea-level rise around the Australian coastline and the changing frequency of extreme sea-level events. Aust. Meteor. Mag., 55, 253-260.

Elsner, J. B., and K.-B. Liu, 2003: Examining the ENSO-typhoon hypothesis. Climate Res., 25, 43-54.

Esteban, M., H. Takagi, and T. Shibayama, 2015: Introduction: Lessons from the last 10 years of coastal disasters. Handbook of Coastal Disaster Mitigation for Engineers and Planners. Esteban, M., H. Takagi, and T. Shibayama (eds.), Elsevier, xxv-xxx.

Hallegatte, S., C. Green, R. J. Nicholls, and J. Corfee-Morlot, 2013: Future flood losses in major coastal cities. Nat. Climate Change, 3, 802-806.

Huang, X., X. Peng, J. Fei, X. Cheng, J. Ding, and D. Yu, 2021: Evaluation and error analysis of official tropical cyclone intensity forecasts during 2005–2018 for the western North Pacific. J. Meteor. Soc. Japan, 99, 139-163.

Irish, J. L., and D. T. Resio, 2010: A hydrodynamics-based surge scale for hurricanes. Ocean Eng., 37, 69-81.

Irish, J. L., D. T. Resio, and J. J. Ratcliff, 2008: The influence of storm size on hurricane surge. J. Phys. Oceanogr., 38, 2003-2013.

Islam, M. R., and H. Takagi, 2020a: Typhoon parameter sensitivity of storm surge in the semi-enclosed Tokyo Bay. Front. Earth Sci., 14, 553-567.

Islam, M. R., and H. Takagi, 2020b: Statistical significance of tropical cyclone forward speed on storm surge generation: Retrospective analysis of best track and tidal data in Japan. Georisk, 15, 247-257.

Islam, M. R., and H. Takagi, 2020c: On the importance of typhoon size in storm surge forecasting. Water, Flood Management and Water Security Under a Changing Climate. Haque, A., and A. I. A. Chowdhury (eds.), Springer, 153-162.

Islam, M. R., H. Takagi, L. T. Anh, A. Takahashi, and K. Bowei, 2018: 2017 Typhoon Lan reconnaissance field survey in coasts of Kanto region, Japan. J. Japan Soc. Civ. Eng., 74, I_593-I_598.

Islam, M. R., C.-Y. Lee, K. T. Mandli, and H. Takagi, 2021: A new tropical cyclone surge index incorporating the effects of coastal geometry, bathymetry and storm information. Sci. Rep., 11, 16747, doi:10.1038/s41598-021-95825-7.

Japan Meteorological Agency, 2020a: Best track data. RSMC Tokyo - Typhoon Center. [Available at https://www.jma.go.jp/jma/jma-eng/jma-center/rsmc-hp-pubeg/trackarchives.html.]

Japan Meteorological Agency, 2020b: Forecast terms related to typhoons (in Japanese). [Available at https://www.jma.go.jp/jma/kishou/know/yougo_hp/haichi2.html.]

Japan Meteorological Agency, 2020c: List of tidal stations are used for observing tide level (in Japanese). [Available at https://www.data.jma.go.jp/kaiyou/db/tide/genbo/index.php.]

Japan Meteorological Agency, 2020d: List of tidal stations are used for astronomic tide prediction (in Japanese). [Available at https://www.data.jma.go.jp/kaiyou/db/tide/suisan/index.php.]

Japan Aerospace Exploration Agency, 2015: ALOS world 3D - 30m. [Available at https://www.eorc.jaxa.jp/ALOS/en/dataset/aw3d30/aw3d30_e.htm.]

Japan Oceanographic Data Center, 2020a: 500m Gridded Bathymetry Data. [Available at https://www.jodc.go.jp/jodcweb/JDOSS/infoJEGG.html.]

Japan Oceanographic Data Center, 2020b: Tide (hour tidal height) data search. [Available at https://jdoss1.jodc.go.jp/vpage/tide.html.]

Kantha, L., 2006: Time to replace the Saffir-Simpson hurricane scale? Eos, Transactons, American Geophyscial Union (EOS), 87, 3-6.

Kantha, L., 2008: Comments on Tropical cyclone destructive potential by integrated kinetic energy. Bull. Amer. Meteor. Soc., 89, 219-221.

Klotzbach, P. J., M. M. Bell, S. G. Bowen, E. J. Gibney, K. R. Knapp, and C. J. Schreck III, 2020: Surface pressure a more skillful predictor of normalized hurricane damage than maximum sustained wind. Bull. Amer. Meteor. Soc., 101, E830-E846.

Knutson, T., S. J. Camargo, J. C. L. Chan, K. Emanuel, C.-H. Ho, J. Kossin, M. Mohapatra, M. Satoh, M. Sugi, K. Walsh, and L. Wu, 2019: Tropical cyclones and climate change assessment: Part I: Detection and attribution. Bull. Amer. Meteor. Soc., 100, 1987-2007.

Knutson, T., S. J. Camargo, J. C. L. Chan, K. Emanuel, C.-H. Ho, J. Kossin, M. Mohapatra, M. Satoh, M. Sugi, K. Walsh, and L. Wu, 2020: Tropical cyclones and climate change assessment: Part II: Projected response to anthropogenic warming. Bull. Amer. Meteor. Soc., 101, E303-E322.

Landsea, C. W., and J. L. Franklin, 2013: Atlantic hurricane database uncertainty and presentation of a new database format. Mon. Wea. Rev., 141, 3576-3592.

Le, T. A., H. Takagi, M. Heidarzadeh, Y. Takata, and A. Takahashi, 2019: Field surveys and numerical simulation of the 2018 Typhoon Jebi: Impact of high waves and storm surge in semi-enclosed Osaka Bay, Japan. Pure Appl. Geophys., 176, 4139-4160.

Li, R. C. Y., and W. Zhou, 2018: Revisiting the intraseasonal, interannual and interdecadal variability of tropical cyclones in the western North Pacific. Atmos. Oceanic Sci. Lett., 11, 198-208.

Mastenbroek, C., G. Burgers, and P. A. E. M. Janssen, 1993: The dynamical coupling of a wave model and a storm surge model through the atmospheric boundary layer. J. Phys. Oceanogr., 23, 1856-1866.

Menéndez, M., and P. L. Woodworth, 2010: Changes in extreme high water levels based on a quasi-global tidegauge data set. J. Geophys. Res., 115, C10011, doi:10.1029/2009JC005997.

Moon, I.-J., S.-H. Kim, and J. C. L. Chan, 2019: Climate change and tropical cyclone trend. Nature, 570, E3-E5.

Mori, N., N. Ariyoshi, T. Shimura, T. Miyashita, and J. Ninomiya, 2021: Future projection of maximum potential storm surge height at three major bays in Japan using the maximum potential intensity of a tropical cyclone. Climatic Change, 164, 25, doi:10.1007/s10584-021-02980-x.

Neumann, B., A. T. Vafeidis, J. Zimmermann, and R. J. Nicholls, 2015: Future coastal population growth and exposure to sea-level rise and coastal flooding - A global assessment. PLoS One, 10, e0118571, doi:10.1371/journal.pone.0118571.

Nicholls, R. J., and A. Cazenave, 2010: Sea-level rise and its impact on coastal zones. Science, 328, 1517-1520.

Omori, F., 1918: Tsunami in Tokyo Bay. Earthquake Investigation Committee report, 89, 19-48 (in Japanese).

Proudman, J., 1953: Dynamical Oceanography. Methuen, 409 pp.

Rego, J. L., and C. Li, 2009: On the importance of the forward speed of hurricanes in storm surge forecasting: A numerical study. Geophys. Res. Lett., 36, L07609, doi:10.1029/2008GL036953.

Sebastian, A., J. Proft, J. C. Dietrich, W. Du, P. B. Bedient, and C. N. Dawson, 2014: Characterizing hurricane storm surge behavior in Galveston Bay using the SWAN+ADCIRC model. Coastal Eng., 88, 171-181.

Shimozono, T., Y. Tajima, K. Kumagai, T. Arikawa, Y. Oda, Y. Shigihara, N. Mori, and T. Suzuki, 2020: Coastal impacts of super typhoon Hagibis on Greater Tokyo and Shizuoka areas, Japan. Coastal Eng. J., 62, 129-145.

Swiss Re, 2013: Mind the risk: A global ranking of cities under threat from natural disasters. 39 pp. [Available at https://www.swissre.com/dam/jcr:1609aced-968f-4faf-beeb-96e6a2969d79/Swiss_Re_Mind_the_risk.pdf.]

Takagi, H., and W. Wu, 2016: Maximum wind radius estimated by the 50 kt radius: Improvement of storm surge forecasting over the western North Pacific. Nat. Hazards Earth Syst. Sci., 16, 705-717.

Takagi, H., and A. Takahashi, 2021: Short-fetch high waves during the passage of 2019 Typhoon Faxai over Tokyo Bay. Front. Earth Sci., 15, 2, doi:10.1007/s11707-021-0872-2.

Takagi, H., M. R. Islam, L. T. Anh, A. Takahashi, T. Sugiu, and F. Furukawa, 2020: Investigation of high wave damage caused by 2019 Typhoon Faxai in Kanto region and wave hindcast in Tokyo Bay. J. Japan Soc. Civ. Eng., 76, 12-21.

Torii, K., and F. Kato, 2004: Risk assessment on storm surge floods. Asian and Pacific Coasts 2003, Proceedings of the 2nd International Conference, Makuhari, Japan, 1-13.

United Nations Population Division, 2018: The world's cities in 2018: Data Boolket. United Nations. [Available at https://digitallibrary.un.org/record/3799524.]

Weisberg, R. H., and L. Zheng, 2006: Hurricane storm surge simulations for Tampa Bay. Estuaries and Coasts, 29, 899-913.

Woodworth, P. L., and D. L. Blackman, 2004: Evidence for systematic changes in extreme high waters since the mid-1970s. J. Climate, 17, 1190-1197.

Yamaguchi, M., and S. Maeda, 2020a: Increase in the number of tropical cyclones approaching Tokyo since 1980. J. Meteor. Soc. Japan, 98, 775-786.

Yamaguchi, M., and S. Maeda, 2020b: Slowdown of typhoon translation speeds in mid-latitudes in September influenced by the Pacific Decadal Oscillation and global warming. J. Meteor. Soc. Japan, 98, 1321-1334.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る