リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Dark Rearing Promotes the Recovery of Visual Cortical Responses but Not the Morphology of Geniculocortical Axons in Amblyopic Cat」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Dark Rearing Promotes the Recovery of Visual Cortical Responses but Not the Morphology of Geniculocortical Axons in Amblyopic Cat

Gotou, Takahiro Kameyama, Katsuro Kobayashi, Ayane Okamura, Kayoko Ando, Takahiko Terata, Keiko Yamada, Chihiro Ohta, Hiroyuki Morizane, Ayaka Hata, Yoshio 鳥取大学 DOI:10.3389/fncir.2021.637638

2021.04.16

概要

Monocular deprivation (MD) of vision during early postnatal life induces amblyopia, and most neurons in the primary visual cortex lose their responses to the closed eye. Anatomically, the somata of neurons in the closed-eye recipient layer of the lateral geniculate nucleus (LGN) shrink and their axons projecting to the visual cortex retract. Although it has been difficult to restore visual acuity after maturation, recent studies in rodents and cats showed that a period of exposure to complete darkness could promote recovery from amblyopia induced by prior MD. However, in cats, which have an organization of central visual pathways similar to humans, the effect of dark rearing only improves monocular vision and does not restore binocular depth perception. To determine whether dark rearing can completely restore the visual pathway, we examined its effect on the three major concomitants of MD in individual visual neurons, eye preference of visual cortical neurons and soma size and axon morphology of LGN neurons. Dark rearing improved the recovery of visual cortical responses to the closed eye compared with the recovery under binocular conditions. However, geniculocortical axons serving the closed eye remained retracted after dark rearing, whereas reopening the closed eye restored the soma size of LGN neurons. These results indicate that dark rearing incompletely restores the visual pathway, and thus exerts a limited restorative effect on visual function.

この論文で使われている画像

参考文献

McGee, A. W., Yang, Y., Fischer, Q. S., Daw, N. W., and Strittmatter, S. M.

(2005). Experience-driven plasticity of visual cortex limited by myelin and

Nogo receptor. Science 309, 2222–2226. doi: 10.1126/science.1114362

Mitchell, D. E. (1988). The extent of visual recovery from early monocular

or binocular visual deprivation in kittens. J. Physiol. 395, 639–660.

doi: 10.1113/jphysiol.1988.sp016939

Mitchell, D. E., Cynader, M., and Anthony Movshon, J. (1977). Recovery from

the effects of monocular deprivation in kittens. J. Comp. Neurol. 176, 53–63.

doi: 10.1002/cne.901760104

Mitchell, D. E., MacNeill, K., Crowder, N. A., Holman, K., and Duffy, K.

R. (2016). Recovery of visual functions in amblyopic animals following

brief exposure to total darkness. J. Physiol. 594, 149–167. doi: 10.1113/JP2

70981

Montey, K. L., and Quinlan, E. M. (2011). Recovery from chronic

monocular deprivation following reactivation of thalamocortical

plasticity by dark exposure. Nat. Commun. 2:317. doi: 10.1038/ncomms

1312

Morishima, Y., Toigawa, M., Ohmura, N., Yoneda, T., Tagane, Y., and Hata,

Y. (2013). Critical period of experience-driven axon retraction in the

pharmacologically inhibited visual cortex. Cereb. Cortex 23, 2423–2428.

doi: 10.1093/cercor/bhs235

Morishita, H., Miwa, J. M., Heintz, N., and Hensch, T. K. (2010). Lynx1,

a cholinergic brake, limits plasticity in adult visual cortex. Science 330,

1238–1240. doi: 10.1126/science.1195320

Murphy, K. M., and Mitchell, D. E. (1986). Bilateral amblyopia after a short

period of reverse occlusion in kittens. Nature 323, 536–538. doi: 10.1038/323

536a0

Murphy, K. M., Roumeliotis, G., Williams, K., Beston, B. R., and Jones, D.

G. (2015). Binocular visual training to promote recovery from monocular

deprivation. J. Vis. 15, 2–2. doi: 10.1167/15.1.2

O’Leary, T. P., Kutcher, M. R., Mitchell, D. E., and Duffy, K. R. (2012). Recovery

of neurofilament following early monocular deprivation. Front. Syst. Neurosci.

6:22. doi: 10.3389/fnsys.2012.00022

Olson, C. R., and Freeman, R. D. (1978). Monocular deprivation and

recovery during sensitive period in kittens. J. Neurophysiol. 41, 65–74.

doi: 10.1152/jn.1978.41.1.65

Olson, C. R., and Freeman, R. D. (1980). Profile of the sensitive period

for monocular deprivation in kittens. Exp. Brain Res. 39, 17–21.

doi: 10.1007/BF00237065

Pizzorusso, T., Medini, P., Berardi, N., Chierzi, S., Fawcett, J. W., and Maffei, L.

(2002). Reactivation of ocular dominance plasticity in the adult visual cortex.

Science 298, 1248–1251. doi: 10.1126/science.1072699

Sale, A., Maya-Vetencourt, J. F., Medini, P., Cenni, M. C., Baroncelli, L., De

Pasquale, R., et al. (2007). Environmental enrichment in adulthood promotes

amblyopia recovery through a reduction of intracortical inhibition. Nat.

Neurosci. 10, 679–681. doi: 10.1038/nn1899

Sanderson, K. J. (1971). The projection of the visual field to the lateral geniculate

and medial interlaminar nuclei in the cat. J. Comp. Neurol. 143, 101–117.

doi: 10.1002/cne.901430107

Sawtell, N. B., Frenkel, M. Y., Philpot, B. D., Nakazawa, K., Tonegawa, S., and Bear,

M. F. (2003). NMDA receptor-dependent ocular dominance plasticity in adult

visual cortex. Neuron 38, 977–985. doi: 10.1016/S0896-6273(03)00323-4

Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T.,

et al. (2012). Fiji: an open-source platform for biological-image analysis. Nat.

Methods 9, 676–682. doi: 10.1038/nmeth.2019

Shatz, C. J., and Stryker, M. P. (1978). Ocular dominance in layer IV of the cat’s

visual cortex and the effects of monocular deprivation. J. Physiol. 281, 267–283.

doi: 10.1113/jphysiol.1978.sp012421

Snyder, A., and Shapley, R. (1979). Deficits in the visual evoked potentials

of cats as a result of visual deprivation. Exp. Brain Res. 37, 73–86.

doi: 10.1007/BF01474255

Wiesel, T. N., and Hubel, D. H. (1963a). Effects of visual deprivation on

morphology and physiology of cells in the cat’s lateral geniculate body. J.

Neurophysiol. 26, 978–993. doi: 10.1152/jn.1963.26.6.978

Wiesel, T. N., and Hubel, D. H. (1963b). Single-cell responses in striate cortex

of kittens deprived of vision in one eye. J. Neurophysiol. 26, 1003–1017.

doi: 10.1152/jn.1963.26.6.1003

Antonini, A., Gillespie, D. C., Crair, M. C., and Stryker, M. P. (1998). Morphology

of single geniculocortical afferents and functional recovery of the visual cortex

after reverse monocular deprivation in the kitten. J. Neurosci. 18, 9896–9909.

doi: 10.1523/JNEUROSCI.18-23-09896.1998

Antonini,

A.,

and

Stryker,

M.

P.

(1996).

Plasticity

of

geniculocortical

afferents

following

brief

or

prolonged

monocular occlusion in the cat. J. Comp. Neurol. 369, 64–82.

doi: 10.1002/(SICI)1096-9861(19960520)369:1<64::AID-CNE5>3.0.CO;2-I

Bear, M. F., and Colman, H. (1990). Binocular competition in the control

of geniculate cell size depends upon visual cortical N-methyl-D-aspartate

receptor activation. Proc. Natl. Acad. Sci. U. S. A. 87, 9246–9249.

doi: 10.1073/pnas.87.23.9246

Blakemore, C., and Van Sluyters, R. C. (1974). Reversal of the physiological effects

of monocular deprivation in kittens: further evidence for a sensitive period. J.

Physiol. 237, 195–216. doi: 10.1113/jphysiol.1974.sp010478

Buzsáki, G., Anastassiou, C. A., and Koch, C. (2012). The origin of extracellular

fields and currents - EEG, ECoG, LFP and spikes. Nat. Rev. Neurosci. 13,

407–420. doi: 10.1038/nrn3241

Duffy, K. R., Bukhamseen, D. H., Smithen, M. J., and Mitchell, D.

E. (2015). Binocular eyelid closure promotes anatomical but not

behavioral recovery from monocular deprivation. Vis. Res. 114, 151–160.

doi: 10.1016/j.visres.2014.12.012

Duffy, K. R., Holman, K. D., and Mitchell, D. E. (2014). Shrinkage of X

cells in the lateral geniculate nucleus after monocular deprivation revealed

by FoxP2 labeling. Vis. Neurosci. 31, 253–261. doi: 10.1017/S09525238130

00643

Duffy, K. R., and Mitchell, D. E. (2013). Darkness alters maturation of visual

cortex and promotes fast recovery from monocular deprivation. Curr. Biol. 23,

382–386. doi: 10.1016/j.cub.2013.01.017

Erchova, I., Vasalauskaite, A., Longo, V., and Sengpiel, F. (2017). Enhancement of

visual cortex plasticity by dark exposure. Philos. Trans. R. Soc. Lond. B. Biol. Sci.

372:20160159. doi: 10.1098/rstb.2016.0159

Giffin, F., and Mitchell, D. E. (1978). The rate of recovery of vision

after early monocular deprivation in kittens. J. Physiol. 274, 511–537.

doi: 10.1113/jphysiol.1978.sp012164

Grieco, S. F., Qiao, X., Zheng, X., Liu, Y., Chen, L., Zhang, H., et al.

(2020). Subanesthetic ketamine reactivates adult cortical plasticity to restore

vision from amblyopia. Curr. Biol. 30, 3591–3603.e8. doi: 10.1016/j.cub.2020.

07.008

He, H.-Y., Hodos, W., and Quinlan, E. M. (2006). Visual deprivation reactivates

rapid ocular dominance plasticity in adult visual cortex. J. Neurosci. 26,

2951–2955. doi: 10.1523/JNEUROSCI.5554-05.2006

Hickey, T. L., Spear, P. D., and Kratz, K. E. (1977). Quantitative studies of cell

size in the cat’s dorsal lateral geniculate nucleus following visual deprivation. J.

Comp. Neurol. 172, 265–281. doi: 10.1002/cne.901720206

Ho, J., Tumkaya, T., Aryal, S., Choi, H., and Claridge-Chang, A. (2019). Moving

beyond P values: data analysis with estimation graphics. Nat. Methods 16,

565–566. doi: 10.1038/s41592-019-0470-3

Hubel, D. H., and Wiesel, T. N. (1962). Receptive fields, binocular interaction

and functional architecture in the cat’s visual cortex. J. Physiol. 160, 106–154.

doi: 10.1113/jphysiol.1962.sp006837

Hubel, D. H., and Wiesel, T. N. (1970). The period of susceptibility to the

physiological effects of unilateral eye closure in kittens. J. Physiol. 206, 419–436.

doi: 10.1113/jphysiol.1970.sp009022

Kanda, Y. (2013). Investigation of the freely available easy-to-use software

‘EZR’ for medical statistics. Bone Marrow Transplant. 48, 452–458.

doi: 10.1038/bmt.2012.244

Kuramoto, E., Furuta, T., Nakamura, K. C., Unzai, T., Hioki, H., and Kaneko,

T. (2009). Two types of thalamocortical projections from the motor thalamic

nuclei of the rat: a single neuron-tracing study using viral vectors. Cereb. Cortex

19, 2065–2077. doi: 10.1093/cercor/bhn231

Maya-Vetencourt, J. F., Sale, A., Viegi, A., Baroncelli, L., De Pasquale, R.,

O’Leary, O. F., et al. (2008). The antidepressant fluoxetine restores plasticity

in the adult visual cortex. Science 320, 385–388. doi: 10.1126/science.11

50516

Frontiers in Neural Circuits | www.frontiersin.org

April 2021 | Volume 15 | Article 637638

Gotou et al.

Darkness and Recovery From Amblyopia

Wiesel, T. N., and Hubel, D. H. (1965). Extent of recovery from the

effects of visual deprivation in kittens. J. Neurophysiol. 28, 1060–1072.

doi: 10.1152/jn.1965.28.6.1060

Copyright © 2021 Gotou, Kameyama, Kobayashi, Okamura, Ando, Terata, Yamada,

Ohta, Morizane and Hata. This is an open-access article distributed under the terms

of the Creative Commons Attribution License (CC BY). The use, distribution or

reproduction in other forums is permitted, provided the original author(s) and the

copyright owner(s) are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Frontiers in Neural Circuits | www.frontiersin.org

10

April 2021 | Volume 15 | Article 637638

Supplementary data

Dark Rearing Promotes the Recovery of Visual Cortical Responses

but not the Morphology of Geniculocortical Axons in Amblyopic

Cat

Takahiro Gotou, Katsuro Kameyama, Ayane Kobayashi, Kayoko Okamura, Takahiko

Ando, Keiko Terata, Chihiro Yamada, Hiroyuki Ohta, Ayaka Morizane and Yoshio

Hata

Supplementary figures 1 and 2

Supplementary Figure 1.

Comparison of ocular dominance in Reopen and Dark groups with Normal group. The data is

a breakdown of Figure 1B. The proportion of cells with each ocular dominance score in

individual animals is plotted as a filled circle on the left axes. The open circles with thin

vertical bars indicate the mean and SD of each group. The right axes indicate the mean

difference. The thick vertical bars represent the 95% confidence interval of mean difference

with a bootstrap sampling distribution. In Reopen and Dark groups, OD1 and 7 represent

cells which respond to the open- and closed eyes, respectively.

Supplementary Figure 2.

Soma area of LGN neurons in individual animals. The mean soma area of layer A and A1 of

the same animal is connected by a line. The open and closed symbols represent the open-eye

and closed-eye recipient layer, respectively.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る