リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「The role of calcium binding to the EF-hand-like motif in bacterial solute-binding protein for alginate import」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

The role of calcium binding to the EF-hand-like motif in bacterial solute-binding protein for alginate import

Okumura, Kenji Maruyama, Yukie Takase, Ryuichi Mikami, Bunzo Murata, Kousaku Hashimoto, Wataru 京都大学 DOI:10.1093/bbb/zbab170

2021.12

概要

Gram-negative Sphingomonas sp. A1 incorporates acidic polysaccharide alginate into the cytoplasm via a cell-surface alginate-binding protein (AlgQ2)-dependent ATP-binding cassette transporter (AlgM1M2SS). We investigated the function of calcium bound to the EF-hand-like motif in AlgQ2 by introducing mutations at the calcium-binding site. The X-ray crystallography of the AlgQ2 mutant (D179A/E180A) demonstrated the absence of calcium binding and significant disorder of the EF-hand-like motif. Distinct from the wild-type AlgQ2, the mutant was quite unstable at temperature of strain A1 growth, although unsaturated alginate oligosaccharides stabilized the mutant by formation of substrate/protein complex. In the assay of ATPase and alginate transport by AlgM1M2SS reconstructed in the liposome, the wild-type and mutant AlgQ2 induced AlgM1M2SS ATPase activity in the presence of unsaturated alginate tetrasaccharide. These results indicate that the calcium bound to EF-hand-like motif stabilizes the substrate-unbound AlgQ2 but is not required for the complexation of substrate-bound AlgQ2 and AlgM1M2SS.

この論文で使われている画像

参考文献

419

Ababou A, and Zaleska M. Electrostatics effects on Ca2+ binding and conformational

420

changes in EF-hand domains: Functional implications for EF-hand proteins. Arch

421

Biochem Biophys 2015;587:61-69.

422

423

Akiyama N, Takeda K, and Miki K. Crystal structure of a periplasmic substrate-binding

protein in complex with calcium lactate. J Mol Biol 2009;392:559-65.

424

Bao H, Dalal K, Cytrynbaum E et al. Sequential action of MalE and maltose allows

425

coupling ATP hydrolysis to translocation in the MalFGK2 transporter. J Biol Chem

426

2015;290:25452-60.

427

428

429

430

Berntsson R P, Smits S H, Schmitt L et al. A structural classification of substrate-binding

proteins. FEBS Lett 2010;584:2606-17.

Carafoli E. Calcium signaling: a tale for all seasons. Proc Natl Acad Sci U S A

2002;99:1115-22.

431

Chifflet S, Torriglia A, Chiesa R et al. A method for the determination of inorganic

432

phosphate in the presence of labile organic phosphate and high concentrations of

18

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

433

434

435

436

437

438

439

440

441

protein: application to lens ATPases. Anal Biochem 1988;168:1-4.

Culurgioni S, Harris G, Singh A K et al. Structural basis for regulation and specificity of

fructooligosaccharide import in Streptococcus pneumoniae. Structure 2017;25:79-93.

Davidson A L, Dassa E, Orelle C et al. Structure, function, and evolution of bacterial

ATP-binding cassette systems. Microbiol Mol Biol Rev 2008;72:317-64.

Delfina C D, Manita G, and Marianna P. Calcium binding proteins and calcium signaling

in prokaryotes. Cell Calcium 2015;57:151-65.

Emsley P, and Cowtan K. Coot: model-building tools for molecular graphics. Acta

Crystallogr D Biol Crystallogr 2004;60:2126-32.

442

Gacesa P. Alginates. Carbohydr. Polym. 1998;8:161-82.

443

Gifford J L, Walsh M P, and Vogel H J. Structures and metal-ion-binding properties of the

444

445

446

447

448

Ca2+-binding helix-loop-helix EF-hand motifs. Biochem J 2007;405:199-221.

Gould A D, Telmer P G, and Shilton B H. Stimulation of the maltose transporter ATPase

by unliganded maltose binding protein. Biochemistry 2009;48:8051-61.

Hisano T, Kimura N, Hashimoto W et al. Pit structure on bacterial cell surface. Biochem

Biophys Res Commun 1996;220:979-82.

449

Kaneko A, Uenishi K, Maruyama Y et al. A solute-binding protein in the closed

450

conformation induces ATP hydrolysis in a bacterial ATP-binding cassette transporter

451

involved in the import of alginate. J Biol Chem 2017;292:15681-90.

452

453

454

455

456

Koropatkin N M, Koppenaal D W, Pakrasi H. B et al. The structure of a cyanobacterial

bicarbonate transport protein, CmpA. J Biol Chem 2007;282:2606-14.

Langmuir I. The adsorption of gases on plane surfeces of glass, mica and plantinum. J

Am Chem Soc 1918;40:1361-1403.

Laskowski R A, Macarthur M W, Moss D S et al. Procheck - a program to check the

19

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

457

458

459

460

461

462

463

stereochemical quality of protein structures. J Appl Crystallogr 1993;26:283-91.

Locher K P. Structure and mechanism of ATP-binding cassette transporters. Philos Trans

R Soc Lond B Biol Sci 2009;364:239-45.

Maruyama Y, Itoh T, Kaneko A et al. Structure of a bacterial ABC rransporter involved

in the import of an acidic polysaccharide alginate. Structure 2015;23:1643-54.

McLellan T. Electrophoresis buffers for polyacrylamide gels at various pH. Anal Biochem

1982;126:94-9.

464

Momma K, Mikami, B Mishima Y et al. Crystal structure of AlgQ2, a macromolecule

465

(alginate)-binding protein of Sphingomonas sp. A1 at 2.0Å resolution. J Mol Biol

466

2002;316:1051-59.

467

Momma K, Mishima Y, Hashimoto W et al. Direct evidence for Sphingomonas sp. A1

468

periplasmic proteins as macromolecule-binding proteins associated with the ABC

469

transporter: molecular insights into alginate transport in the periplasm. Biochemistry

470

2005;44:5053-64.

471

Momma K, Okamoto M, Mishima Y et al. A novel bacterial ATP-binding cassette

472

transporter system that allows uptake of macromolecules. J Bacteriol 2000;182:3998-

473

4004.

474

Murshudov G N, Vagin A A, and Dodson E J. Refinement of macromolecular structures

475

by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr

476

1997;53:240-55.

477

Niesen F H, Berglund H, and Vedadi M. The use of differential scanning fluorimetry to

478

detect ligand interactions that promote protein stability. Nat Protoc 2007;2:2212-21.

479

Nishitani Y, Maruyama Y, Itoh T et al. Recognition of heteropolysaccharide alginate by

480

periplasmic solute-binding proteins of a bacterial ABC transporter. Biochemistry

20

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

481

482

483

2012;51:3622-33.

Oiki S, Mikami B, Maruyama Y et al. A bacterial ABC transporter enables import of

mammalian host glycosaminoglycans. Sci Rep 2017;7:1069.

484

Oldham M L, Chen S, and Chen J. Structural basis for substrate specificity in the

485

Escherichia coli maltose transport system. Proc Natl Acad Sci U S A 2013;110:18132-

486

7.

487

488

489

490

491

492

493

494

495

496

497

498

Oldham M L, Davidson A L, and Chen J. Structural insights into ABC transporter

mechanism. Curr Opin Struct Biol 2008;18:726-33.

Oldham M L, Khare D, Quiocho F A et al. Crystal structure of a catalytic intermediate of

the maltose transporter. Nature 2007;450:515-21.

Otwinowski Z, and Minor W. Processing of X-ray diffraction data collected in oscillation

mode. Methods Enzymol 1997;276:307-26.

Rice A J, Park A, and Pinkett H W. Diversity in ABC transporters: type I, II and III

importers. Crit Rev Biochem Mol Biol 2014;49:426-37.

Scheepers G H, Lycklama A N J A, and Poolman B. An updated structural classification

of substrate-binding proteins. FEBS Lett 2016;590:4393-401.

Schneider C A, Rasband W S, and Eliceiri K W. NIH image to ImageJ: 25 years of image

analysis. Nat Methods 2012;9:671-5.

499

Schrodinger L L C The PyMOL Molecular Graphics System, version 1.3r1. 2010.

500

Standley D M, Toh H, and Nakamura H. Detecting local structural similarity in proteins

501

502

503

504

by maximizing number of equivalent residues. Proteins 2004;57:381-91.

Tang C, Schwieters C D, and Clore G M. Open-to-closed transition in apo maltosebinding protein observed by paramagnetic NMR. Nature 2007;449:1078-82.

ter Beek J, Guskov A, and Slotboom D J. Structural diversity of ABC transporters. J Gen

21

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

505

506

507

508

509

Physiol 2014;143:419-35.

Toh H. Introduction of a distance cut-off into structural alignment by the double dynamic

programming algorithm. Comput Appl Biosci 1997;13:387-96.

Vagin A, and Teplyakov A. MOLREP: an automated program for molecular replacement.

J Appl Crystallogr 1997;30:1022-5.

22

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Table1. Calcium content of purified AlgQ2

Ca (µM)

(Ca mol)/(protein mol)

wtAlgQ2

11

1.1

mtAlgQ2

1.7

0.17

510

511

23

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Table 2. Data collection and refinement statistics

Data collection

Wavelength (Å)

Resolution range (Å)

Space group

Unit-cell parameters (Å, °)

a, b, c

α, β, γ

Total observations

Unique reflections

Completeness (%)

I/σ(I)

Rmerge

Rmean

CC1/2

Wilson B (Å2)

Refinement

Resolution range (Å)

Rwork/Rfree

Protein molecules/ASU

No. atoms

Protein

Saccharide

Calcium ion

Water molecule

RMSD

Bond lengths (Å)

Bond angles (deg.)

Ramachandran plot

Most favored (%)

Allowed (%)

Outlier (%)

PDB ID

512

1.00000

50.0–2.20 (2.24–2.20) a

P1

45.87, 60.82, 87.23

80.37, 89.81, 88.17

124992 (5993)

47003 (2305)

97.8 (97.9)

63.6 (5.5)

0.145 (0.362)

0.178 (0.452)

0.821

29.6

50.0-2.20 (2.26-2.20)

0.210 (0.268)/0.271 (0.336)

7974

72

200

0.012

1.517

97.3

2.3

0.4

6JHX

The highest resolution shell is shown in parentheses.

513

24

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Table 3. Apparent Tm (°C)

No ligand

(Topen)

wtAlgQ2

45.63

mtAlgQ2

<25

CaCl2

(Topen)

45.63

<25

Δ4M

(Tclosed)

63.18

55.72

514

515

25

CaCl2+Δ4M

(Tclosed)

63.18

55.72

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

516

Figure legends

517

Figure 1. X-ray crystal structures of ABC transporter and AlgQ2. (a) (Left) The complex

518

structure of AlgQ2 and AlgM1M2SS (PDB ID: 4TQU). Magenta, AlgQ2; green, AlgM1;

519

cyan, AlgM2; orange, AlgS. Calcium ion in AlgQ2 is indicated by a yellow ball. (Right)

520

Magnified image at the interface between AlgQ2 and AlgM2. (b) EF-hand-like calcium-

521

binding site of AlgQ2. (c) calcium (yellow ball) is far from the substrate (red/white balls)-

522

binding site of AlgQ2.

523

Figure 2. X-ray crystal structure of mtAlgQ2. (a) Overall structure of mtAlgQ2. Gray

524

and red-colored sticks indicate unsaturated alginate trisaccharide. (b) (Left) Structure of

525

mutated EF-hand-like motif. Red, EF-hand-like motif helix; green, loop. (Right) The

526

figure shows the 2Fo-Fc map contoured at 1.2 σ around the EF-hand-like motif. (c)

527

Superimposing of wtAlgQ2 and mtAlgQ2 for all Cα atoms. Blue, mtAlgQ2; orange,

528

wtAlgQ2. Calcium ion is indicated by a yellow ball.

529

Figure 3. Thermal shift assay by DSF. Top, fluorescent profile. Bottom, negative

530

derivative curve plot of the fluorescent profile. Red, wtAlgQ2 without Δ4M; blue,

531

mtAlgQ2 without Δ4M; black, wtAlgQ2 with Δ4M; green, mtAlgQ2 with Δ4M.

532

Figure 4. Native PAGE profile of AlgQ2. (a) wtAlgQ2 or mtAlgQ2 with or without 50-

533

µM Δ4M. (b) Binding ability of wtAlgQ2 (upper) and mtAlgQ2 (lower) to Δ4M in

534

proportion to increasing substrate concentration. (c) Profile of formation of AlgQ2 and

535

Δ4M complex. Circle; wtAlgQ2, square; mtAlgQ2.

536

Figure 5. ATPase and transport activity of AlgM1M2SS. (a) ATPase activity in the

537

presence (+) or absence (−) of each component in the reaction mixture. ATPase activity

538

was represented as phosphate (nmol) produced by 1-mg AlgM1M2SS per 1 min. (b)

539

Transport activity. Transport activity used PAΔ4M as a substrate in the presence (+) or

26

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

540

absence (−) of each component in the reaction mixture. Activity of AlgM1M2SS in the

541

presence of wtAlgQ2 was taken as 100%. Negative values indicate no transport activity

542

calculated by subtraction of the mean values of the observed transport activity in

543

liposomes without AlgM1M2SS. (c) ATPase activity using PAΔ4M as a substrate in the

544

presence (+) or absence (−) of each component in the reaction mixture. Assays were

545

performed three times, and the error bars represent SE.

546

Figure 6. Mechanistic model of ABC transporter for alginate import. The dynamics of

547

ABC transporter machinery model. Pink, wtAlgQ2; purple, mtAlgQ2; light yellow,

548

calcium; gray, alginate; green, AlgM1; blue, AlgM2; dark yellow, AlgS.

549

550

27

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

551

552

Graphical abstract. The calcium bound to EF-hand-like motif stabilizes the substrate-

553

unbound AlgQ2, while calcium-free AlgQ2 adopts a closed conformation in complex

554

with substrate.

28

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

555

556

Figure 1.

29

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

557

558

Figure 2.

559

560

30

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

561

562

Figure 3.

563

31

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

564

565

Figure 4.

566

567

32

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

568

569

Figure 5.

570

571

33

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

572

573

Figure 6.

574

575

34

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

576

577

Figure S1. PAΔ4M-binding ability of wtAlgQ2 and mtAlgQ2 with increasing PAΔ4M

578

concentration. Top, wtAlgQ2; bottom, mtAlgQ2. The difference in the band profile from

579

Figure 4b was thought to be due to positive-charge donated by PA.

580

581

35

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る