リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Effect of spatial variability on stability and failure mechanisms of 3D slope using random limit equilibrium method」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Effect of spatial variability on stability and failure mechanisms of 3D slope using random limit equilibrium method

HU Lihang 高橋 章浩 笠間 清伸 Lihang Hu Akihiro Takahashi Kiyonobu Kasama 東京工業大学 DOI:https://doi.org/10.1016/j.sandf.2022.101225

2022.12.01

概要

It is well known that soils are prone to spatial non-uniformity, which affects evaluations of slope stability and failure mechanisms. This paper presents a probabilistic slope stability evaluation, considering the 3D spatial variation in the soil properties, by the random limit equilibrium method (RLEM). Specifically, 3D random fields of cohesion c, friction angle /, and soil unit weight c are generated using a fast Fourier transform. The RLEM is applied to evaluate the effects of the 3D spatial variability of the soil properties on slope stability and failure mechanisms. A Monte Carlo simulation is used to interpret the slope reliability and variation in slope failure dimension. Based on the critical slip surface passing different portions of a slope (slope base, inclined face, and crest), four main failure mechanisms (two base failures and two face failures), and one additional failure mechanism (toe failure), are identified for spatially variable slopes, and the corresponding distributions of the stability number (Ns) and sliding volume (V) are investigated in detail. The results show that the large variation in the soil properties induces changes in the failure mechanisms, and a threshold of c-/ values is found for a shift from base failure to toe failure. Lastly, associated sensitivity studies are performed to explore the effects of the uncertainties of the input parameters on the uncertainty of the output. The results estimated by partial Spearman correlation coefficients show that cohesion has the greatest influence on the stability number, and that a positive influence of the unit weight, contributing to slope stability, is found for a base failure mechanism.

この論文で使われている画像

参考文献

Al-Karni, A.A., Al-Shamrani, M.A., 2000. Study of the effect of soil anisotropy on slope stability using method of slices. Comput. Geotech. 26 (2), 83-103. https://doi.org/10.1016/S0266-352X(99)00046-4.

Bishop, A.W., 1955. The use of the slip circle in the stability analysis of earth slopes. Géotechnique 5, 7-17. https://doi.org/10.1680/geot.1955.5.1.7.

Chen, Y.M., Lansivaara, T., Wei, W.B., 2007. Two-dimensional slope stability analysis by limit equilibrium and strength reduction methods. Comput. Geotech. 34, 137-150. https://doi.org/10.1016/j.compgeo.2006.10.011.

Chen, M., Lu, W.X., Zhao, H.Q., Bao, X.H., Jiang, X., 2016. Critical geometric parameters of slope and their sensitivity analysis: a case study in Jilin, Northeast China. Environ. Earth Sci. 75 (832), 1-11. https://doi.org/10.1007/s12665-016-5623-4.

Chen, F.Y., Wang, L., Zhang, W.G., 2019. Reliability assessment on stability of tunnelling perpendicularly beneath an existing tunnel considering spatial variabilities of rock mass properties. Tunn. Undergr. Space Technol. 88, 276 289. https://doi.org/10.1016/ j.tust.2019.03.013.

Chen, L.L., Zhang, W.G., Chen, F.Y., Gu, D.M., Wang, L., Wang, Z.Y., 2022. Probabilistic assessment of slope failure considering anisotropic spatial variability of soil properties. Geosci. Front. 13 (3). https://doi. org/10.1016/j-gsf.2022.101371 101371.

Cho, S.E., 2009. Probabilistic assessment of slope stability that considers the spatial variability of soil properties. J. Geotech. Geoenviron. Eng. 136 (7), 975-984. https://doi.org/10.1061/(ASCEGT. 1943-5606.0000309.

Chowdhury, R.N., Xu, D.W., 1993. Rational polynomial technique in slope reliability analysis. J. Geotech. Geoenviron. Eng. 119 (12), 1910-1928.

Conover, W.J., 1999. Practical nomparametric statistics. John Wiley & Sons Inc., New York, pp. 145-148.

El-Ramly, H., Morgenstern, N.R., Cruden, D.M., 2002. Probabilistic slope stability analysis for practice. Can. Geotech. J. 39 (3), 665-683. https://doi.org/10.1139/t02-034.

El-Ramly, H., Morgenstem, N.R., Cruden, D.M., 2006. Lodalen slide: a probabilistic assessment. Can. Geotech. J. 43 (9), 956 968. https://doi. org/10.1139/t06-050.

Fenton, G.A., Griffiths, D.V., 2008. Risk assessment in geotechnical engineering. John Wiley & Sons Inc., New York, pp. 177-178.

Griffiths, D.V., Fenton, G.A., 2004. Probabilistic slope stability analysis by finite elements. J. Geotech. Geoenviron. Eng. 130 (5), 507-518. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:5(507).

Griffiths, D.V., Huang, J., Fenton, G., 2009. On the reliability of earth slope in three dimensions. Proc. Royal Soc. A: Math., Phys. Eng. Sci. 465 (2110), 3145-3164. https://doi.org/10.1098/rspa.2009.0165.

Griffiths, D.V., Huang, J.S., Fenton, G.A., 2009. Influence of spatial variability on slope reliability using 2-D random fields. J. Geotech.

Geoenvron. Eng. 135 (10), 1367-1378. https://doi.org/10.1061/(ASCE) GT. 1943-5606.0000099.

Hassan, A.M., Wolff, T.F., 1999. Search algorithm for minimum reliability index of earth slopes. J. Geotech. Geoenviron. Eng. 125 (4), 301-308. https://doi.org/10.1061/(ASCE)1090-0241(1999)125:4 (301).

Hicks, M.A., Chen, J., Spencer, W.A., 2008. Influence Of Spatial Variability On 3D Slope Failures. In: Brebbia, C.A., Beriatos, E. (Eds.), Risk Analysis VI, WIT Transactions on Information and Communication Technologies, 39. WIT Press, Southampton, UK, pp.335-342. https://doi.org/10.2495/RISK080331.

Hicks, M.A., Nuttal, J.D., Chen, J., 2014. Influence of heterogeneity on 3D slope reliability and failure consequence. Comput. Geotech. 61, 198-208. https://doi.org/10.1016/j.compgeo.2014.05.004.

Hicks, M.A., Spencer, W.A., 2010. Influence of heterogeneity on the reliability and failure of a long 3D slope. Comput. Geotech. 31 (8), 948-955. https://doi.org/10.1016/j.compgeo.2010.08.001.

Huang, J., Lyamin, A.V., Griffiths, D.V., Krabbenhoft, K., Sloan, S.W., 2013. Quantitative risk assessment of landslide by limit analysis and random fields. Comput. Geotech. 53, 60-67.

Hungr, O., 1987. An extension of Bishop's simplified method of slope stability analysis to three dimensions. Géotechnique 37 (1), 113-117. https://doi.org/10.1680/geot.1987.37.1.113.

Janbu, N., Bjerrum, L., Kjaernsli, B., 1956. Soil mechanics applied to some engineering problems. Norwegian Geotech. Inst. Publ. 16, 1-93.

Javankhoshdel, S., Bathurst, R.J., 2016. Influence of cross correlation between soil parameters on probability of failure of simple cohesive and c-& slopes. Can. Geotech. J. 53 (5), 839-853. https://doi.org/ 10.1139/cgj-2015-0109.

Kasama, K., Furukawa, Z., Yasufuku, N., 2021a. Cyclic shear property and seismic runout analysis for pumice fall deposit. Soil Dyn. Earthq. Eng. 143. https://doi.org/10.1016/j.soildyn.2021.106588 106588.

Kasama, K., Kurukawa, Z., Hu, L. H., 2021b. Practical reliability analysis for earthquake-induced 3D landslide using stochastic response surface method. Compt. Geotech. 137. https://doi.org/10.1016/j.comp-geo.2021.104303 104303.

Kasama, K., Whittle, A.J., 2015. Effect of spatial variability on the slope stability using Random Field Numerical Limit Analyses. Georisk: Assess Manage. Risk Eng. Syst. Geohazards 10, 42-54. https://doi. org/10.1080/17499518.2015.1077973.

Khan, F.S., Malik, A.A., 2013. Probability and sensitivity analysis of slope stability of Naulong dam. Pak. J. Eng. Appl. Sci. 45 (9), 54 64.

Lee, S.W., Ching, J., 2020. Simplified risk assessment for a spatially variable undrained long slope. Comput. Geotech. 117, 103228. https:// doi.org/10.1016/j.compgeo.2019.103228.

Li, D.Q., Jiang, S.H., Cao, Z.J., Zhou, W., Zhou, C.B., Zhang, L.M., 2015. A multiple response-surface method for slope reliability analysis considering spatial variability of soil properties. Eng. Geol. 187, 60-72. https://doi.org/10.1016/j.enggeo.2014.12.003.

Li, D.Q., Xiao, T., Cao, Z.J., Phoon, K.K., Zhou, C.B., 2016. Efficient and consistent reliability analysis of soil slope stability using both limit equilibrium analysis and finite element analysis. Appl. Math. Model. 40 (9), 5216-5229. https://doi.org/10.1016/j.apm.2015.11.044.

Liu, S.Y., Shao, L.T., Li, H.J., 2015. Slope stability analysis using the limit equilibrium method and two finite element methods. Comput. Geotech. 63, 291-298. https://doi.org/10.1016/j.compgeo.2014.10.008.

Low, B.K., Lacasse, S., Nadim, F., 2007. Slope reliability analysis accounting for spatial variation. Georisk: Assess Manage. Risk Eng. Syst. Geohazards I (4), 177-189. https://doi.org/10.1080/ 17499510701772089.

Matsuo, M., Kuroda, K., 1974. Probabilistic approach to design of embankments. Soils Found 14, 1-17. https://doi.org/10.3208/ sandf1972.14.2_1.

Matthews, C., Farook, Z., Helm, P.R., 2014. Slope stability analysis - limit equilibrium or the finite element method. Ground Eng. 45 (8), 22-28.

Mellah, R., Auvinet, G., Masrouri, F., 2000. Stochastic finite element method applied to non-linear analysis of embankments. Probabilistic Eng. Mech. 15, 251-259. https://doi.org/10.1016/S0266-8920(99)00024-7.

Naylor, D.J., 1982. Finite element and slope stability. Numr. Met. Geotech. 92, 229-244. https://doi.org/10.1007/978-94-009-7895-9_10.

Parker, C., Simon, A., Thorne, C.R., 2008. The effects of variability in bank material properties on riverbank stability: goodwin Creek, Mississippi. Geomorphology 101, 533-543. https://doi.org/10.1016/ j.geomorph.2008.02.007.

Phoon, K.K., Kulhawy, F.H., 1999. Characterization of geotechnical variability. Can. Geotech. J. 36 (4), 612-624. https://doi.org/10.1139/ t99-038.

Rahardjo, H., Satyanaga, A., Leong, E.C., Ng, Y.S., Pang, H.T.C., 2012. Variability of residual soil properties. Eng. Geol. 141 (19), 124-140. https://doi.org/10.1016/j.enggeo.2012.05.009.

Reid, M.E., Christian, S.B., Brien, D.L., Henderson, S.T., 2015. Scoop-s3D software to analyze three-dimensional slope stability throughout a digital landscape. U.S. Geol. Survey Tech. Methods 7-21. https:// doi.org/10.3133/tm14A1.

Sivakumar Babu, G.L., Srivastava, A., 2007. Reliability analysis of allowable pressure on shallow foundation using response surface method. Comput. Geotech. 34 (3), 187-194. https://doi.org/10.1016/ j.compgeo.2006.11.002.

Stianson, J.R., Fredlund, D.G., Chan, D., 2011. Three-dimensional slope stability based on stresses from a stress-deformation analysis. Can. Geotech. J. 48 (2), 891-904. https://doi.org/10.1139/t11-006.

Suchomel, R., Masin, D., 2010. Comparison of different probabilistic methods for predicting stability of a slope in spatially variable c-ф soil. Comp. Geotech. 37 (1-2), 132-140. https://doi.org/10.1016/j.compgeo.2009.08.005.

Tabarroki, M., Ahmad, F., Banaki, R., Jha, S.K., Ching, J.Y., 2013. Determining the factors of safety of spatially variable slopes modeled by random fields. J. Geotech. Geoenviron. Eng. 139 (12), 2082-2095. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000955.

Ugai, K., Hosobori, K., 1988. Extension of simplified Bishop method, simplified Janbu method and Spencer's method to three dimensions. Proc. Japan Soc. Civil Eng. 1988 (394), 21-26. https://doi.org/10.2208/ iscej. 1988.394 21.

Vanmarcke, E.H., 1977. Probabilistic modeling of soil profiles. J. Geotech. Eng. 103 (11), 1227-1246.

Varkey, D., Hicks, M.A., Vardon, P.J., 2017. Influence of Spatial Variability of Shear Strength Parameters on 3D Slope Reliability and Comparison of Analysis Methods. In: Huang, J., Fenton, G.A., Zhang, L., Griffiths, D.V. (Eds.), Geo-Risk 2017: Impact of Spatial Variability, Probabilistic Site Characterization, and Geohazards, Geotechnical Special Publications, 284. ASCE, pp. 400 409. https:// doi.org/10.1061/9780784480717.038.

Wu, X.Z., 2015. Modelling dependence structures of soil shear strength data with bivariate copulas and applications to geotechnical reliability analysis. Soils Found 55 (5), 1243-1258. https://doi.org/10.1016/j. sandf.2015.09.023.

Xiao, T., Li, D.Q., Cao, Z.J., Au, S.K., Phoon, K.K., 2016. Three-dimensional slope reliability and risk assessment using auxiliary random finite element method. Comput. Geotech. 79, 146-158. https://doi.org/10.1016/j.compgeo.2016.05.024.

Yu, H., Salgado, R., Sloan, S.W., Kim, J.M., 1998. Limit analysis versus limit equilibrium for slope stability. J. Geotech. Geoenvron. Eng. 124 (1), 1-11. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:1(1).

Zhang, W.G., Meng, F.S., Chen, F.Y., Liu, H.L., 2021. Effects of spatial variability of weak layer and seismic randomness on rock slope stability and reliability analysis. Soil Dyn. Earthq. Eng. 146. https:// doi.org/10.1016/j.soildyn.2021.106735 106735.

Zhang, Z.P., Sheng, Q., Fu, X.D., Zhou, Y.Q., Huang, J.H., Du, Y.X., 2019. An approach to predicting the shear strength of soil-rock mixture based on rock block proportion. Bull. Eng. Geo. Environ. 79, 2423-2437. https://doi.org/10.1007/s10064-019-01658-0.

Zhang, J.Y., Wan, L.P., Duan, G.Y., 2017. Study on sensitivity analysis method of slope stability based on Sweden arc method. Curr. Sci. 113 (11), 2097-2104. https://doi.org/10.1016/j.soildyn.2021.106588.

Zhu, D., Griffiths, D.V., Fenton, G.A., 2019. Worst-case spatial correlation length in probabilistic slope stability analysis. Géotechnique 69 (1), 85-88. https://doi.org/10.1680/geot.17.T.050.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る