リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「The “Karakkaze” Local Wind as a Convexity Wind: A Case Study Using Dual-Sonde Observations and a Numerical Simulation」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

The “Karakkaze” Local Wind as a Convexity Wind: A Case Study Using Dual-Sonde Observations and a Numerical Simulation

日下, 博幸 Nishi, Akifumi 筑波大学 DOI:10.2151/sola.2019-029

2020.01.21

概要

In the present study, we conducted dual-sonde observations and a numerical simulation when the “Karakkaze”, a local wind in Japan, blew. The result showed that the basic features of the Karakkaze coincide closely with the characteristics of convexity wind defined as “strong winds in the leeward region of a convex-shaped mountain range”.
Firstly, we investigated the horizontal distribution of surface winds during the Karakkaze event on 24 January 2019. The results showed that the Karakkaze blows in the downwind plain of the convexity of the mountain range.
Secondly, we compared the vertical distribution of the winds inside and outside the Karakkaze region, using the results of dual-sonde observations and a numerical simulation. Our results showed that strong winds blew from near ground level to a height of 1.8 km above mean sea level (AMSL) in the Karakkaze region. In contrast, weaker winds were observed and simulated outside the Karakkaze region. The reason of the weaker winds is that a hydraulic jump occurs on the slope of the mountain range and that the area outside the Karakkaze region is located in a more leeward direction than the hydraulic jump. These features closely match the characteristics of convexity winds.

参考文献

American Meteorological Society, 2019: “Downslope windstorm”.

Glossary of Meteorology. American Meteorological Society

(Available online at http://glossary.ametsoc.org/wiki/Down

slope_windstorms, accessed 20 May 2019).

Arakawa, S., 1969: Climatological and dynamical studies on the

local strong winds, mainly in Hokkaido. Japan. Geophys.

Mag., 34, 349−425.

Chen, F., and J. Dudhia, 2001: Coupling an advanced land-surface/

hydrology model with the Penn State/NCAR MM5 modeling system. Part I: Model description and implementation.

Mon. Wea. Rev., 129, 569−585.

Clark, T. L., and W. R. Peltier, 1984: Critical level reflection and

the resonant growth of nonlinear mountain waves. J. Atmos.

Sci., 41, 3122−3134.

Dudhia, J., 1989: Numerical study of convection observed during

the Winter Monsoon Experiment using a mesoscale two–

dimensional model. J. Atmos. Sci., 46, 3077−3107.

Elvidge, A. D., I. A. Renfrew, J. C. King, A. Orr, T. A. LachlanCope, M. Weeks, and S. L. Gray, 2015: Foehn jets over the

Larsen C Ice Shelf, Antarctica. Quart. J. Roy. Meteor. Soc.,

141, 698−713.

Elvidge, A. D., and I. A. Renfrew, 2016: The causes of foehn

warming in the lee of mountains. Bull. Amer. Meteor. Soc.,

97, 455−466, doi:10.1175/BAMS-D-14-00194.1.

Fudeyasu, H., T. Kuwagata, Y. Ohashi, S. Suzuki, Y. Kiyohara,

and Y. Hozumi, 2008: Numerical study of the local down­

slope wind “Hirodo-kaze” in Japan. Mon. Wea. Rev., 136,

27−40.

Gaberšek, S., and D. Durran, 2004: Gap flows through idealized

topography. Part I: Forcing by large-scale winds in the nonrotating limit. J. Atmos. Sci., 61, 2846−2862, doi:10.1175/

JAS-3340.1.

Gohm, A., and G. J. Mayr, 2005: Numerical and observational

case-study of a deep Adriatic bora. Quart. J. Roy. Meteor.

Soc., 131, 1363−1392, doi:10.1256/qj.04.82.

Gohm, A., G. J. Mayr, A. Fix, and A. Giez, 2008: On the onset of

bora and the formation of rotors and jumps near a mountain

gap. Quart. J. Roy. Meteor. Soc., 134, 21−46, doi:10.1002/

qj.206.

Hong, S.Y., J. Dudhia, and S. H. Chen, 2004: A revised approach

to ice microphysical processes for the bulk parameterization

of clouds and precipitation. Mon. Wea. Rev., 132, 103−120.

Ishii, S., K. Sasaki, K. Mizutani, T. Aoki, T. Itabe, H. Kanno, D.

Matsushima, W. Sha, A. Noda, M. Sawada, M. Ujiie, Y.

Matsuura, and T. Iwasaki, 2007: Temporal evolution and

spatial structure of the local easterly wind “KiyokawaDashi” in Japan. Part I: Coherent doppler lidar observations”. J. Meteor. Soc. Japan, 85, 797−813.

Japan Meteorological Agency, 2019: Daily weather chart in January 2019 (in Japanese) (Available online at https://www.

data.jma.go.jp/fcd/yoho/data/hibiten/2019/201901.pdf,

accessed 20 May 2019).

Kain, J. S., 2004: The Kain–Fritsch convective parameterization:

An update. J. Appl. Meteor., 43, 170−181.

Kusaka, H., and H. Fudeyasu, 2017: Review of downslope windstorms in Japan. Wind & Structures, 24, 637−656.

Kusaka, H., Y. Miya, and R. Ikeda, 2011: Effect of solar radiation

amount and synoptic-scale wind on the local wind “Karakkaze” over the Kanto Plain in Japan. J. Meteor. Soc. Japan.,

88, 161−181.

Lackmann, G. M., and Overland, J. E, 1989: Atmospheric structure and momentum balance during a gap-wind event in

Shelikof Strait, Alaska. Mon. Wea. Rev., 117, 1817−1833,

doi:10.1175/1520-0493(1989)117,1817:ASAMBD.2.0.CO;2.

Lilly, D. K., and E. J. Zipser, 1972: The Front Range windstorm of

11 January 1972 –A meteorological narrative. Weatherwise,

117, 2041−2058.

Lilly, D. K., and J. B. Klemp, 1979: The effects of terrain shape

on non-linear hydrostatic mountains waves. J. Fluid Mech.,

95, 241−261.

Lin, Y., and T. Wang, 1996: Flow regimes transient dynamics of

two-dimensional flow over an isolated mountain ridge. J.

Atmos. Sci., 53, 139−158.

Long, R. R., 1954: Some aspects of the flow of stratified fluid

system. Tellus., 6, 97−115.

Mass, C., M. D. Warner, and R. Steed, 2014: Strong westerly

wind events in the Strait of Juan de Fuca. Wea. Forecasting,

29, 445−465.

Mayr, G. J., L. Armi, S. Arnold, R. M. Banta, L. S. Darby, D. R.

Durran, C. Flamant, S. Gaberšek, A. Gohm, R. Mayr, S.

Mobbs, L. B. Nance, I. Vergeiner, J. Vergeiner, and C. D.

Whiteman, 2004: Gap flow measurements during the Mesoscale Alpine Programme. Meteor. Atmos. Phys., 86, 99−119.

Mellor, G. C., and T. Yamada, 1982: Development of a turbulence

closure model for geophysical fluid problems. Rev. Geophys.

Space Phys., 20, 851−875.

Miller, P. P., and D. R. Durran, 1991: On the sensitivity of down­

slope windstorms to the asymmetry of the mountain profile.

J. Atmos. Sci., 48, 1457−1473.

Miltenberger, A. K., S. Reynolds, and M. Sprenger, 2016: Revisiting the latent heating contribution to foehn warming:

Lagrangian analysis of two foehn events over the Swiss

Alps. Quart. J. Roy. Meteor. Soc., 142, 2194−2204, doi:

Nishi et al., A Case Study of the Karakkaze using Dual-Sonde Observations and a Numerical Simulation

10.1002/qj.2816

Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S.

A. Clough, 1997: Radiative transfer for inhomogeneous

atmospheres: RRTM, a validated correlated–k model for the

longwave. J. Geophys. Res., 102, 16663−16682.

Nakanishi, M., and H. Niino, 2009: Development of an improved

turbulence closure model for the atmospheric boundary

layer. J. Meteor. Soc. Japan, 87, 895−912.

Nishi, A., and H. Kusaka, 2019a: Effect of mountain convexity on

the locally strong “Karakkaze” wind. J. Meteor. Soc. Japan,

(in press).

Nishi, A., and H. Kusaka, 2019b: Comparison of spatial pattern

and mechanism between convexity and gap winds. SOLA,

15, 12−16, doi:10.2151/2019-003.

Peltier, W. R., and T. M. Clark, 1979: The evolution and stability

of finite-amplitude mountain waves. Part 2: Surface wave

drag and severe downslope windstorms. J. Atmos. Sci., 36,

1498−1529.

Pitts, R. O., and T. J. Lyons, 1989: Airflow over a two-dimensional

escarpment. I: Observations. Quart. J. Roy. Meteor. Soc.,

115, 965−981.

Raymond, J. D., 1972: Calculation of airflow over an arbitrary

ridge including diabatic heating and cooling. J. Atmos. Sci.,

29, 837−843.

Rotunno, R., and G. Bryan, 2018: Numerical simulations of twolayer flow past topography. Part I: The leeside hydraulic

jump. J. Atmos. Sci., 75, 1231−1241, doi:10.1175/JAS-D17-0306.1.

Saito, K., 1993: A numerical study of the local downslope wind

“Yamaji-kaze” in Japan. Part2: Non linear aspect of the

3D flow over a mountain range with a col. J. Meteor. Soc.

Japan, 71, 247−272.

Saito, K., and M. Ikawa, 1991: A numerical study of the local

downslope wind “Yamaji-kaze” in Japan. J. Meteor. Soc.

165

Japan, 69, 31−56.

Sasaki, K., M. Sawada, S. Ishii, H. Kanno, K. Mizutani, T. Aoki,

T. Itabe, D. Matsushima, W. Sha, A. T. Noda, M. Ujiie, Y.

Matsuura, and Iwasaki, T., 2010: The temporal evolution

and spatial structure of the local easterly wind “Kiyokawadashi” in Japan. Part II: Numerical simulations. J. Meteor.

Soc. Japan, 88, 161−181.

Scorer, R., 1952: Mountain-gap winds; a study of surface wind at

Gibraltar. Quart. J. Roy. Meteor. Soc., 78, 53−61.

Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M.

Barker, M. G. Duda, X. Huang, W. Wang, and J. G. Powers,

2008: A description of the Advanced Research WRF Version

3. NCAR/TN-4751STR, 126 pp.

Smith, R. B., 1985: On severe downslope winds. J. Atmos. Sci.,

42, 2597−2603.

Watarai, Y., Y. Shigeta, and K. Nakagawa, 2015: Characteristics of

the potential temperature distribution along the downslope

wind in winter. Bull. Geo-Environ. Sci., 17, 131−137 (in

Japanese).

Yomogida, Y., and K. Rikiishi, 2004: Diurnal variation of the

strong local wind “Karak-Kaze” in the Kanto Plain with

special reference to the role of thermal convection. Proc.

18th Wind Eng. Sympo, 23−28 (in Japanese).

Yamagishi, Y., 2002: Essentials of Wind for Weather Forecasting.

Ohmsha, 189 pp. (in Japanese).

Yoshino, M. M., 1986: Climate in a Small Area. New Ed. Chijin

Shokan, 298 pp. (in Japanese).

Zängl, G., 2003: Deep and shallow south foehn in the region of

Innsbruck: Typical features and semi-idealized numerical

simulation. Meteor. Atmos. Phys., 83, 237−261.

Manuscript received 1 March 2019, accepted 24 May 2019

SOLA: https://www. jstage. jst. go. jp/browse/sola/

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る