リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「ビスフォスフォネートは、マウス味蕾および舌上皮細胞のファルネシル二リン酸シンターゼを阻害することにより、HCl に対する行動反応に影響を与える」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

ビスフォスフォネートは、マウス味蕾および舌上皮細胞のファルネシル二リン酸シンターゼを阻害することにより、HCl に対する行動反応に影響を与える

尾池, 麻未 OIKE, Asami オイケ, アサミ 九州大学

2023.03.20

概要

九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Bisphosphonate affects the behavioral responses
to HCl by disrupting farnesyl diphosphate
synthase in mouse taste bud and tongue
epithelial cells
尾池, 麻未

https://hdl.handle.net/2324/6787527
出版情報:九州大学, 2022, 博士(歯学), 課程博士
バージョン:
権利関係:Open Access. This article is licensed under a Creative Commons Attribution 4.0
International License.

(様式3)





論 文 名



尾池

麻未

Bisphosphonate affects the behavioral responses to HCl by disrupting



farnesyl diphosphate synthase in mouse taste bud and tongue epithelial
cells
(ビスフォスフォネートは、マウス味蕾および舌上皮細胞のファルネシル二リン
酸シンターゼを阻害することにより、HCl に対する行動反応に影響を与える)





:甲















骨粗鬆症は高齢者に多い疾患であり、治療薬としてビスフォスフォネート製剤 (BP)
が主に使用されている。この副作用として味覚変化が報告されているが、発生機序は不
明である。そこで本研究では、BP の一種であるリセドロネートの長期投与による味覚
器機能への影響についてマウスを用いて調べた。BP の阻害分子は、メバロン酸経路中
のファルネシル二リン酸合成酵素 (FDPS) であることが報告されている。RT-PCR 解
析では、FDPS およびメバロン酸経路関連分子 mRNA がマウス味蕾と舌上皮細胞に発
現していた。また、免疫組織染色により FDPS タンパク質が酸味受容に関与するⅢ型
味細胞に比較的多く発現することを見出した。次にリセドロネート長期投与による影響
を調べた結果、形態学的解析では、コントロール群と比較して味蕾数、味細胞数、FDPS
陽性細胞数に有意な変化は見られなかった。短時間リック試験では、酸味である HCl
溶液に対する飲水量が有意に減少したが、他の基本味溶液に対する飲水量は変化しなか
った。味神経応答解析では、酸味溶液を含めた全ての味質で変化が認められなかった。
qPCR 解析の結果、味蕾における細胞間接着因子デスモグレイン 2 (DSG2) mRNA の発
現が有意に減少していることが分かった。また、FDPS mRNA の発現増加が認められ
たが、その他の味覚関連分子には変化は見られなかった。DSG タンパク質の味覚器お
よび舌上皮における発現様式には明らかな違いは認められなかった。以上の結果から、
リセドロネートは、味蕾や舌上皮細胞に発現する FDPS と直接相互作用してメバロン
酸経路を阻害し、舌上皮のバリア機能を制御する DSG2 の発現に影響を与える。この
結果、H+ や Cl- の細胞間透過性が亢進して体性感覚神経を刺激することが、HCl に対
する行動応答に変化を及ぼす原因である可能性が示唆された。

この論文で使われている画像

参考文献

1. Naik, B. S., Shetty, N. & Maben, E. V. S. Drug-induced taste disorders. Eur. J. Intern. Med. 21, 240–243 (2010).

2. Bartl, R. Bisphosphonates in Medical Practice: Actions, Side Effects, Indications, Strategies (Springer, 2007).

3. Jones, P. B. B., Mccloskey, E. V. & Kanis, J. A. Transient taste-loss during treatment with etidronate. Lancet 330, 637 (1987).

4. Abrahamsen, B. Adverse effects of bisphosphonates. Calcif. Tissue Int. 86, 421–435 (2010).

5. Hummel, T., Landis, B. N. & Hüttenbrink, K.-B. Smell and taste disorders. GMS Curr. Top. Otorhinolaryngol. Head Neck Surg. 10,

1–15 (2011).

6. Luckman, S. P., Hughes, D. E., Coxon, F. P., Russell, R. G. G. & Rogers, M. J. Nitrogen-containing bisphosphonates inhibit the

mevalonate pathway and prevent post-translational prenylation of GTP-binding proteins, including Ras. J. Bone Miner. Res. 13,

581–589 (1998).

7. Caraglia, M. et al. Isoprenylation of intracellular proteins as a new target for the therapy of human neoplasms: Preclinical and

clinical implications. Curr. Drug Targets 6, 301–323 (2005).

8. Donetti, E. et al. Alendronate impairs epithelial adhesion, differentiation and proliferation in human oral mucosa. Oral Dis. 20,

466–472 (2014).

9. Shigemura, N. & Ninomiya, Y. Recent advances in molecular mechanisms of taste signaling and modifying. Int. Rev. Cell Mol. Biol.

323, 71–106 (2016).

10. Chandrashekar, J., Hoon, M. A., Ryba, N. J. P. & Zuker, C. S. The receptors and cells for mammalian taste. Nature 444, 288–294

(2006).

11. Lindemann, B. Receptors and transduction in taste. Nature 413, 219–225 (2001).

12. Sukumaran, S. K. et al. Whole transcriptome profiling of taste bud cells. Sci. Rep. 2017(7), 1–15 (2017).

13. Chandrashekar, J. et al. The taste of carbonation. Science 326, 443 (2009).

14. Pastar, I. et al. Skin metabolite, farnesyl pyrophosphate, regulates epidermal response to inflammation, oxidative stress, and migration. J. Cell. Physiol. 231, 2452–2463 (2016).

15. Michlig, S., Damak, S. & le Coutre, J. Claudin-based permeability barriers in taste buds. J. Comp. Neurol. 502, 1003–1011 (2007).

16. Simon, S. A., Holland, V. F., Benos, D. J. & Zampighi, G. A. Transcellular and paracellular pathways in lingual epithelia and their

influence in taste transduction. Microsc. Res. Tech. 26, 196–208 (1993).

17. Hirose, F., Takai, S., Takahashi, I. & Shigemura, N. Expression of protocadherin-20 in mouse taste buds. Sci. Rep. 10, 2051 (2020).

18. Buhaescu, I. & Izzedine, H. Mevalonate pathway: A review of clinical and therapeutical implications. Clin. Biochem. 40, 575–584

(2007).

19. Goldstein, J. L. & Brown, M. S. Regulation of the mevalonate pathway. Nature 343, 425–430 (1990).

20. Kataoka, S. et al. The candidate sour taste receptor, PKD2L1, is expressed by type III taste cells in the mouse. Chem. Senses 33,

243–254 (2008).

21. Zhang, J. & Liu, Q. Cholesterol metabolism and homeostasis in the brain. Protein Cell 6, 254–264 (2015).

22. Ohashi, K. et al. Early embryonic lethality caused by targeted disruption of the 3-hydroxy-3-methylglutaryl-CoA reductase gene.

J. Biol. Chem. 278, 42936–42941 (2003).

23. Hager, E. J. et al. Deletion of a single mevalonate kinase (Mvk) allele yields a murine model of hyper-IgD syndrome. J. Inherit.

Metab. Dis. 30, 888–895 (2007).

24. Tozawa, R. I. et al. Embryonic lethality and defective neural tube closure in mice lacking squalene synthase. J. Biol. Chem. 274,

30843–30848 (1999).

25. Francis, S. A. et al. Rapid reduction of MDCK cell cholesterol by methyl-beta-cyclodextrin alters steady state transepithelial

electrical resistance. Eur. J. Cell Biol. 78, 473–484 (1999).

26. Zhang, F. L. & Casey, P. J. Protein prenylation: Molecular mechanisms and functional consequences. Annu. Rev. Biochem. 65,

241–269 (1996).

27. Zhang, D. et al. The small GTP-binding protein, rho p21, is involved in bone resorption by regulating cytoskeletal organization in

osteoclasts. J. Cell Sci. 108, 2285–2292 (1995).

28. Ridley, A. J., Paterson, H. F., Johnston, C. L., Diekmann, D. & Hall, A. The small GTP-binding protein rac regulates growth factorinduced membrane ruffling. Cell 70, 401–410 (1992).

29. Ridley, A. J. & Hall, A. The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in

response to growth factors. Cell 70, 389–399 (1992).

30. Clark, E. A., King, W. G., Brugge, J. S., Symons, M. & Hynes, R. O. Integrin-mediated signals regulated by members of the rho

family of GTPases. J. Cell Biol. 142, 573 (1998).

31. Rogers, M. J. et al. Cellular and molecular mechanisms of action of bisphosphonates. Cancer 88, 2961–2978 (2000).

32. McClung, M. R. & Ebetino, F. H. History of risedronate. Bone 137, 115407 (2020).

33. Bezzi, M., Hasmim, M., Bieler, G., Dormond, O. & Rüegg, C. Zoledronate sensitizes endothelial cells to tumor necrosis factorinduced programmed cell death: Evidence for the suppression of sustained activation of focal adhesion kinase and protein kinase

B/Akt. J. Biol. Chem. 278, 43603–43614 (2003).

34. Wilke, M. et al. Zoledronic acid and atorvastatin inhibit αvβ33-mediated adhesion of breast cancer cells. J. Bone Oncol. 3, 10–17

(2014).

35. Kharazmi, M., Sjöqvist, K. & Warfvinge, G. Oral ulcers, a little known adverse effect of alendronate: Review of the literature. J.

Oral Maxillofac. Surg. 70, 830–836 (2012).

36. Papamitsou, T. et al. Bisphosphonate’s effect on tongue mucosa: An experimental electron microscopy study. Medicina (B Aires)

56, 51 (2020).

37. Landesberg, R. et al. Inhibition of oral mucosal cell wound healing by bisphosphonates. J. Oral Maxillofac. Surg. 66, 839–847 (2008).

38. Cozin, M. et al. Novel therapy to reverse the cellular effects of bisphosphonates on primary human oral fibroblasts. J. Oral Maxillofac. Surg. 69, 2564–2578 (2011).

39. Kim, R. H. et al. Bisphosphonates induce senescence in normal human oral keratinocytes. J. Dent. Res. 90, 810–816 (2011).

40. Schlegel, N. et al. Desmoglein 2-mediated adhesion is required for intestinal epithelial barrier integrity. Am. J. Physiol. Gastrointest.

Liver Physiol. 298, 774–783 (2010).

41. Spindler, V. et al. Loss of desmoglein 2 contributes to the pathogenesis of Crohn’s disease. Inflamm. Bowel Dis. 21, 2349–2359

(2015).

42. Wong, G. T., Ruiz-Avila, L. & Margolskee, R. F. Directing gene expression to gustducin-positive taste receptor cells. J. Neurosci.

19, 5802–5809 (1999).

Scientific Reports |

Vol:.(1234567890)

(2022) 12:21246 |

https://doi.org/10.1038/s41598-022-25755-5

14

www.nature.com/scientificreports/

43. Wakchoure, S. et al. Bisphosphonates inhibit the growth of mesothelioma cells in vitro and in vivo. Clin. Cancer Res. 12, 2862–2868

(2006).

44. Ebetino, F. H. et al. The relationship between the chemistry and biological activity of the bisphosphonates. Bone 49, 20–33 (2011).

45. Borah, B. et al. Long-term risedronate treatment normalizes mineralization and continues to preserve trabecular architecture:

Sequential triple biopsy studies with micro-computed tomography. Bone 39, 345–352 (2006).

46. Delmas, P. D. et al. Effect of monitoring bone turnover markers on persistence with risedronate treatment of postmenopausal

osteoporosis. J. Clin. Endocrinol. Metab. 92, 1296–1304 (2007).

47. Harris, S. T. et al. Effects of risedronate treatment on vertebral and nonvertebral fractures in women with postmenopausal osteoporosis: A randomized controlled trial. JAMA 282, 1344–1352 (1999).

48. Beidler, L. M. & Smallman, R. L. Renewal of cells within taste buds. J. Cell Biol. 27, 263–272 (1965).

49. Farbman, A. I. Renewal of taste bud cells in rat circumvallate papillae. Cell Prolif. 13, 349–357 (1980).

50. Cho, Y. K., Farbman, A. I. & Smith, D. V. The timing of α-gustducin expression during cell renewal in rat vallate taste buds. Chem.

Senses 23, 735–742 (1998).

51. Hamamichi, R., Asano-Miyoshi, M. & Emori, Y. Taste bud contains both short-lived and long-lived cell populations. Neuroscience

141, 2129–2138 (2006).

52. Yoshida, R. et al. Endocannabinoids selectively enhance sweet taste. Proc. Natl. Acad. Sci. U.S.A. 107, 935–939 (2010).

53. Shigemura, N. et al. Leptin modulates behavioral responses to sweet substances by influencing peripheral taste structures. Endocrinology 145, 839–847 (2004).

54. Shigemura, N. et al. Angiotensin II modulates salty and sweet taste sensitivities. J. Neurosci. 33, 6267–6277 (2013).

55. Takai, S. et al. Glucagon-like peptide-1 is specifically involved in sweet taste transmission. FASEB J. 29, 2268–2280 (2015).

56. Murata, Y. et al. Gurmarin suppression of licking responses to sweetener-quinine mixtures in C57BL mice. Chem. Senses 28,

237–243 (2003).

57. Pfaffl, M. W. A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res. 29, 45 (2001).

Acknowledgements

We appreciate the technical assistance from The Research Support Center, Research Center for Human Disease

Modeling, Kyushu University Graduate School of Medical Sciences. We thank OxMedComms (http://​www.​

oxmed​comms.​com) for proofreading the manuscript.

Author contributions

Conceptualization, A.O., S.I. and N.S.; methodology, A.O., S.I., Y.K., S.T., K.S. and N.S.; validation, A.O., S.I.,

A.H., Y.K., S.T., K.S., N.W. and N.S.; formal analysis, A.O., S.I. and N.S.; investigation, A.O. and S.I.; resources,

S.I. and N.S.; data curation, A.O., S.I. and N.S.; writing—original draft preparation, A.O., S.I. and N.S.; writing—review and editing, A.O., S.I. and N.S.; visualization, A.O., S.I., A.H., Y.O., Y.N., Y.K., S.T., K.S. and N.S.;

supervision, S.I. and N.S.; project administration, N.W. and N.S.; funding acquisition, A.O., S.I. and N.S. All

authors have read and agreed to the published version of the manuscript.

Funding

This work was supported by JSPS KAKENHI grants (JP18K17016, JP19H03818, JP20K18458, JP21H05006,

JP22K09905 and JP22K19672) and JST SPRING grants (JPMJSP2136). The funders had no role in the study

design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing interests The authors declare no competing interests.

Additional information

Supplementary Information The online version contains supplementary material available at https://​doi.​org/​

10.​1038/​s41598-​022-​25755-5.

Correspondence and requests for materials should be addressed to N.S.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and

institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International

License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the

Creative Commons licence, and indicate if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the

material. If material is not included in the article’s Creative Commons licence and your intended use is not

permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from

the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2022

Scientific Reports |

(2022) 12:21246 |

https://doi.org/10.1038/s41598-022-25755-5

15

Vol.:(0123456789)

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る