リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Molecular Dynamics Simulations of Ion Extraction from Nanodroplets for Ionic Liquid Electrospray Thrusters」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Molecular Dynamics Simulations of Ion Extraction from Nanodroplets for Ionic Liquid Electrospray Thrusters

Takaaki Enomoto Shehan M. Parmar Ryohei Yamada Richard E. Wirz Yoshinori Takao 80552661 横浜国立大学

2022.09.26

概要

Molecular dynamics (MD) simulations were performed for ion extraction from electrospray thrusters to investigate relevant extraction processes numerically. To approximate the electrospray jet tip, a simulation domain consisting of 4-5 nm-sized ionic liquid droplets was used. The extracted ion angles and kinetic energies from EMI–BF4 (1-ethyl-3-methylimidazolium tetrafluoroborate) and EMI–Im (1-ethyl-3-methylimidazolium bis((trifluoromethyl)sulfonyl)imide) droplets were quantified by applying uniform electric fields of 1.3–1.7 V nm−1. The MD simulations are in great agreement with simulations presented in the literature and consistently show a greater preference for monomer emission than reported experimentally. At field strengths above 1.5 V nm−1, apparent droplet fracturing and breakup lead to an increase in ion angular velocity distributions. Greater mobility of EMI–BF4 ions than EMI–Im was also observed, indicative of the crucial role of cation-anion hydrogen bond strengths in ion extraction and beam composition between different propellants.

この論文で使われている画像

参考文献

1. SpaceWorks Enterprises, Inc. (2020) Nano/Microsatellite Market Forecast, 10th Edition. https://www.spaceworks. aero/wp-content/uploads/Nano-Microsatellite-Market-Forecast-10th-Edition-2020.pdf. Accessed 24 Aug 2022

2. Poghosyan A, Golkar A (2017) CubeSat evolution: Analyzing CubeSat capabilities for conducting science missions. Prog Aerosp Sci 88:59–83. https://doi.org/10.1016/j.paerosci.2016.11.002.

3. Levchenko I, Bazaka K, Ding Y, Raitses Y, Mazouffre S, Henning T, Klar PJ, Shinohara S, Schein J, Garrigues L, Kim M, Lev D, Taccogna F, Boswell RW, Charles C, Koizumi H, Shen Y, Scharlemann C, Keidar M, Xu S (2018) Space micropro- pulsion systems for Cubesats and small satellites: From proximate targets to furthermost frontiers. Appl Phys Rev 5(1):11104. https://doi.org/10.1063/1.5007734.

4. Mueller HRZJJ (2010) Survey of Propulsion Technologies Applicable to Cubesats. Technical report. NASA Jet Propul- sion Lab, Pasadena.

5. Krejci D, Lozano P (2018) Space Propulsion Technology for Small Spacecraft. Proc IEEE 106(3):362–378. https://doi. org/10.1109/JPROC.2017.2778747.

6. O’Reilly D, Herdrich G, Kavanagh DF (2021) Electric Propulsion Methods for Small Satellites: A Review. https://doi. org/10.3390/aerospace8010022.

7. Taylor GI (1964) Disintegration of water drops in an electric field. Proc R Soc Lond A Math Phys Sci 280(1382):383–397. https://doi.org/10.1098/rspa.1964.0151.

8. Krejci D, Mier-Hicks F, Thomas R, Haag T, Lozano P (2017) Emission Characteristics of Passively Fed Electrospray Microthrusters with Propellant Reservoirs. J Spacecr Rocket 54(2):447–458. https://doi.org/10.2514/1.A33531.

9. Lozano P, Martínez-Sánchez M (2005) Ionic liquid ion sources: characterization of externally wetted emitters. J Col- loid Interface Sci 282(2):415–421. https://doi.org/10.1016/j.jcis.2004.08.132.

10. Natisin MR, Zamora HL, Holley ZA, Ivan Arnold N, McGehee WA, Holmes MR, Eckhardt D (2021) Efficiency Mecha- nisms in Porous-Media Electrospray Thrusters. J Propuls Power 37(5):650–659. https://doi.org/10.2514/1.B38160.

11. Courtney DG (2011) Ionic Liquid Ion Source Emitter Arrays Fabricated on Bulk Porous Substrates for Spacecraft Propulsion. PhD thesis. Massachusetts Institute of Technology.

12. Ziemer J, Gamero-Castaño M, Hruby V, Spence D, Demmons N, McCormick R, Roy T, Gasdaska C, Young J, Connolly B (2005) Colloid Micro-Newton Thruster Development for the ST7-DRS and LISA Missions In: 41st AIAA/ASME/SAE/ ASEE Joint Propulsion Conference & Exhibit. Joint Propulsion Conferences.. American Institute of Aeronautics and Astronautics, Tucson. https://doi.org/10.2514/6.2005-4265.

13. Dupont J, de Souza RF, Suarez PAZ (2002) Ionic Liquid (Molten Salt) Phase Organometallic Catalysis. Chem Rev 102(10):3667–3692. https://doi.org/10.1021/cr010338r.

14. Kitazawa Y, Ueno K, Watanabe M (2018) Advanced Materials Based on Polymers and Ionic Liquids. Chem Rec 18(4):391–409. https://doi.org/10.1002/tcr.201700041.

15. Courtney DG, Shea H, Dannenmayer K, Bulit A (2017) Charge Neutralization and Direct Thrust Measurements from Bipolar Pairs of Ionic Electrospray Thrusters. J Spacecr Rocket 55(1):54–65. https://doi.org/10.2514/1. A33863.

16. Krejci D, Jenkins MG, Lozano P (2019) Staging of electric propulsion systems: Enabling an interplanetary Cube- sat. Acta Astronaut 160:175–182. https://doi.org/10.1016/j.actaastro.2019.04.031.

17. Ziemer JK, Marrese-Reading C, Arestie SM, Conroy DG, Leifer SD, Lopez Ortega A, Demmons NR, Wirz RE, Gamero MIncorporating Lessons Learned into LISA Colloid Microthruster Technology Development In: AIAA Propulsion and Energy 2019 Forum. AIAA Propulsion and Energy Forum.. American Institute of Aeronautics and Astronau- tics. https://doi.org/10.2514/6.2019-3814.

18. Wirz RE (2019) Electrospray Thruster Performance and Lifetime Investigation for the LISA Mission In: AIAA Pro- pulsion and Energy 2019 Forum.. American Institute of Aeronautics and Astronautics, Indianapolis. https://doi. org/10.2514/6.2019-3816.

19. Nakagawa K, Tsuchiya T, Takao Y (2017) Microfabricated emitter array for an ionic liquid electrospray thruster. Jpn J Appl Phys 56(6S1):06–18. https://doi.org/10.7567/jjap.56.06gn18.

20. Courtney DG, Li HQ, Lozano P (2012) Emission measurements from planar arrays of porous ionic liquid ion sources. J Phys D Appl Phys 45(48):485203. https://doi.org/10.1088/0022-3727/45/48/485203.

21. Thuppul A, Wright PL, Collins AL, Ziemer JK, Wirz RE (2020) Lifetime Considerations for Electrospray Thrusters. Aerospace 7(8). https://doi.org/10.3390/aerospace7080108.

22. Emoto K, Tsuchiya T, Takao Y (2018) Numerical Investigation of Steady and Transient Ion Beam Extraction Mecha- nisms for Electrospray Thrusters. Trans Jpn Soc Aeronaut Space Sci Aerosp Technol Jpn 16(2):110–115. https:// doi.org/10.2322/tastj.16.110.

23. Nuwal N, Azevedo VA, Klosterman MR, Budaraju S, Levin DA, Rovey JL (2021) Multiscale modeling of fragmenta- tion in an electrospray plume. J Appl Phys 130(18):184903. https://doi.org/10.1063/5.0064711.

24. Ma C, Ryan C (2021) Plume particle energy analysis of an ionic liquid electrospray ion source with high emission density. J Appl Phys 129(8):83302. https://doi.org/10.1063/5.0035889.

25. Liu X, Kang X, Deng H, Sun Y (2021) Energy properties and spatial plume profile of ionic liquid ion sources based on an array of porous metal strips. Plasma Sci Technol 23(12):125502. https://doi.org/10.1088/2058-6272/ ac23bd.

26. Gamero-Castaño M (2008) The structure of electrospray beams in vacuum. J Fluid Mech 604:339–368. https://doi. org/10.1017/S0022112008001316.

27. Parmar SM, Collins AL, Wirz RE (2021) Electrospray Plume Modeling for Rapid Life and Performance Analysis In: AIAA SciTech Forum.. American Institute of Aeronautics and Astronautics, San Diego. https://doi.org/10.2514/6. 2022-1357.

28. Zhao Y, Zhao J-S, Zhao F-Q, Xu S-Y, Ju X-H (2020) Revealing the decomposition behavior of hexanitrostilbene and aluminum nanoparticles composites: A reactive molecular dynamics simulation. Acta Astronaut 177:320–331. https://doi.org/10.1016/j.actaastro.2020.07.042.

29. Ray P, Balducci A, Kirchner B (2018) Molecular Dynamics Simulations of Lithium-Doped Ionic-Liquid Electrolytes. J Phys Chem B 122(46):10535–10547. https://doi.org/10.1021/acs.jpcb.8b06022.

30. Malali S, Foroutan M (2017) Study of Wetting Behavior of BMIM+/PF6– Ionic Liquid on TiO2 (110) Surface byMolecular Dynamics Simulation. J Phys Chem C 121(21):11226–11233. https://doi.org/10.1021/acs.jpcc.6b12065.

31. Torfason K, Valfells A, Manolescu A (2016) Molecular dynamics simulations of field emission from a prolate spheroi- dal tip. Phys Plasmas 23(12):123119. https://doi.org/10.1063/1.4972821.

32. Saiz F, Gamero-Castaño M (2016) Molecular dynamics of nanodroplet impact: The effect of the projectile’s molecular mass on sputtering. AIP Adv 6(6):65319. https://doi.org/10.1063/1.4954740.

33. Nakazaki N, Takao Y, Eriguchi K, Ono K (2015) Molecular dynamics simulations of Si etching in Cl- and Br-based plasmas: Cl+ and Br+ ion incidence in the presence of Cl and Br neutrals. J Appl Phys 118(23):233304. https://doi. org/10.1063/1.4937449.

34. Daily JW, Micci MM (2009) Ionic velocities in an ionic liquid under high electric fields using all-atom and coarse- grained force field molecular dynamics. J Chem Phys 131(9):94501. https://doi.org/10.1063/1.3197850.

35. Daily JW (2008) Molecular Dynamics Simulation of Ion Emission from Nanodroplets of Ionic Liquids. J Propuls Power 24(5):981–986. https://doi.org/10.2514/1.28762.

36. Bobrov AA, Bronin SY, Klyarfeld AB, Zelener BB, Zelener BV (2020) Molecular dynamics calculation of thermal con- ductivity and shear viscosity in two-component fully ionized strongly coupled plasma. Phys Plasmas 27(1):10701. https://doi.org/10.1063/1.5128446.

37. Borner A, Li Z, Levin DA (2012) Modeling of an ionic liquid electrospray using molecular dynamics with constraints. J Chem Phys 136(12):124507. https://doi.org/10.1063/1.3696006.

38. Ghalami F, Sedghamiz T, Sedghamiz E, Khashei F, Zahedi E (2019) Molecular Dynamics Simulation of Wetting and Interfacial Properties of Multicationic Ionic Liquid Nanodroplets on Boron Nitride Monolayers: A Comparative Approach. J Phys Chem C 123(22):13551–13560. https://doi.org/10.1021/acs.jpcc.8b11987.

39. Zhang J, Cai G, Liu X, He B, Wang W (2021) Molecular dynamics simulation of ionic liquid electrospray: Revealing the effects of interaction potential models. Acta Astronaut 179:581–593. https://doi.org/10.1016/j.actaastro.2020.11.018.

40. Zheng F, Zhang S, Mo J, Yi H, Zhang S, Yu H, Lin K, Sha J, Chen Y (2020) Ion Concentration Effect on Nanoscale Elec- trospray Modes. Small 16(24):2000397. https://doi.org/10.1002/smll.202000397.

41. Borner A, Levin DA (2015) Coupled Molecular Dynamics—3-D Poisson Simulations of Ionic Liquid Electrospray Thrusters. IEEE Trans Plasma Sci 43(1):295–304. https://doi.org/10.1109/TPS.2014.2327913.

42. Borner A, Wang P, Levin DA (2014) Influence of electrical boundary conditions on molecular dynamics simulations of ionic liquid electrosprays. Phys Rev E 90(6):63303. https://doi.org/10.1103/PhysRevE.90.063303.

43. Kim DY, Micci MM (2013) Molecular Dynamics Simulations of a Liquid Gallium Electrospray Thruster. J Propuls Power 29(4):899–905. https://doi.org/10.2514/1.B34501.

44. Prince BD, Tiruppathi P, Bemish RJ, Chiu Y-H, Maginn EJ (2015) Molecular Dynamics Simulations of 1-Ethyl-3-methyl- imidazolium Bis[(trifluoromethyl)sulfonyl]imide Clusters and Nanodrops. J Phys Chem A 119(2):352–368. https://doi. org/10.1021/jp507073e.

45. Plimpton S (1995) Fast Parallel Algorithms for Short-Range Molecular Dynamics. J Comput Phys 117(1):1–19. https:// doi.org/10.1006/jcph.1995.1039.

46. Martínez L, Andrade R, Birgin EG, Martínez JM (2009) PACKMOL: A package for building initial configurations for molecular dynamics simulations. J Comput Chem 30(13):2157–2164. https://doi.org/10.1002/jcc.21224.

47. Martínez JM, Martínez L (2003) Packing optimization for automated generation of complex system’s initial configu- rations for molecular dynamics and docking. J Comput Chem 24(7):819–825. https://doi.org/10.1002/jcc.10216.

48. Allen MP, Tildesley DJ (2017) Computer Simulation of Liquids. 2nd edn.. Oxford University Press, New York.

49. Wang Y, Noid WG, Liu P, Voth GA (2009) Effective force coarse-graining. Phys Chem Chem Phys 11(12):2002–2015. https://doi.org/10.1039/B819182D.

50. Takahashi N (2010) Molecular dynamics modeling of ionic liquids in electrospray propulsion. Master thesis. https:// dspace.mit.edu/handle/1721.1/59700. Accessed 24 Aug 2022

51. Coles T, Fedkiw T, Lozano P (2012) Investigating Ion Fragmentation in Electrospray Thruster Beams In: 48th AIAA/ ASME/SAE/ASEE Joint Propulsion Conference & Exhibit.. American Institute of Aeronautics and Astronautics, Atlanta. https://doi.org/10.2514/6.2012-3793.

52. Villanueva-Bonay E, Gamero-Castaño M (2019) Molecular dynamics of nanodroplet impact: The effect of particle resolution in the projectile model. AIP Advances 9(8):85204. https://doi.org/10.1063/1.5100964.

53. Hunt PA (2006) The simulation of imidazolium-based ionic liquids. Mol Simul 32(1):1–10. https://doi.org/10.1080/ 08927020500486627.

54. Bedrov D, Piquemal JP, Borodin O, MacKerell AD, Roux B, Schröder C (2019) Molecular Dynamics Simulations of Ionic Liquids and Electrolytes Using Polarizable Force Fields. Am Chem Soc. https://doi.org/10.1021/acs.chemrev.8b00763. https://pubs.acs.org/sharingguidelines.

55. Islam MM, Kolesov G, Verstraelen T, Kaxiras E, van Duin ACT (2016) eReaxFF: A Pseudoclassical Treatment of Explicit Electrons within Reactive Force Field Simulations. J Chem Theory Comput 12(8):3463–3472. https://doi.org/10.1021/ acs.jctc.6b00432.

56. Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids. J Am Chem Soc 118(45):11225–11236. https://doi.org/ 10.1021/ja9621760.

57. Canongia Lopes JN, Pádua AAH, Shimizu K (2008) Molecular Force Field for Ionic Liquids IV: Trialkylimidazolium and Alkoxycarbonyl-Imidazolium Cations; Alkylsulfonate and Alkylsulfate Anions. J Phys Chem B 112(16):5039–5046. https://doi.org/10.1021/jp800281e.

58. Chiu Y-H, Gaeta G, Levandier DJ, Dressler RA, Boatz JA (2007) Vacuum electrospray ionization study of the ionic liquid, [Emim][Im]. Int J Mass Spectrom 265(2):146–158. https://doi.org/10.1016/j.ijms.2007.02.010.

59. Brehm M, Thomas M, Gehrke S, Kirchner B (2020) TRAVIS—A free analyzer for trajectories from molecular simulation. J Chem Phys 152(16):164105. https://doi.org/10.1063/5.0005078.

60. Malek SMA, Poole PH, Saika-Voivod I (2018) Thermodynamic and structural anomalies of water nanodroplets. Nat Commun 9(1):2402. https://doi.org/10.1038/s41467-018-04816-2.

61. Leong K-Y, Wang F (2018) A molecular dynamics investigation of the surface tension of water nanodroplets and a new technique for local pressure determination through density correlation. J Chem Phys 148(14):144503. https:// doi.org/10.1063/1.5004985.

62. Fan X-H, Chen Y-P, Su C-S (2016) Density and Viscosity Measurements for Binary Mixtures of 1-Ethyl-3-methylimida- zolium Tetrafluoroborate ([Emim][BF4]) with Dimethylacetamide, Dimethylformamide, and Dimethyl Sulfoxide. J Chem Eng Data 61(2):920–927. https://doi.org/10.1021/acs.jced.5b00753.

63. Ticknor B, Anderson J, Fritz B, Chiu Y-H (2010) Effect of Aspect Ratio on the Wettability and Electrospray Properties of Porous Tungsten Emitters with the Ionic Liquid [Emim][Im] In: 46th AIAA/ASME/SAE/ASEE Joint Propulsion Confer- ence & Exhibit.. American Institute of Aeronautics and Astronautics, Nashville. https://doi.org/10.2514/6.2010-6618.

64. Lozano PC (2005) Energy properties of an EMI-Im ionic liquid ion source. J Phys D Appl Phys 39(1):126–134. https:// doi.org/10.1088/0022-3727/39/1/020.

65. Natisin MR, Zamora HL, McGehee WA, Arnold NI, Holley ZA, Holmes MR, Eckhardt D (2020) Fabrication and charac- terization of a fully conventionally machined, high-performance porous-media electrospray thruster. J Micromech Microeng 30(11):115021. https://doi.org/10.1088/1361-6439/abb8c3.

66. Chen C, Chen M, Zhou H (2020) Characterization of an ionic liquid electrospray thruster with a porous ceramic emit- ter. Plasma Sci Technol 22(9):94009. https://doi.org/10.1088/2058-6272/ab9528.

67. Bedrov D, Piquemal J-P, Borodin O, MacKerell AD, Roux B, Schröder C (2019) Molecular Dynamics Simulations of Ionic Liquids and Electrolytes Using Polarizable Force Fields. Chem Rev 119(13):7940–7995. https://doi.org/10.1021/acs. chemrev.8b00763.

68. Yan T, Li S, Jiang W, Gao X, Xiang B, Voth GA (2006) Structure of the LiquidVacuum Interface of Room-Temperature Ionic Liquids: A Molecular Dynamics Study. J Phys Chem B 110(4):1800–1806. https://doi.org/10.1021/jp055890p.

69. Iribarne JV, Thomson BA (1976) On the evaporation of small ions from charged droplets. J Chem Phys 64(6):2287– 2294. https://doi.org/10.1063/1.432536.

70. Gamero-Castaño M, Fernández de la Mora J (2000) Direct measurement of ion evaporation kinetics from electrified liquid surfaces. J Chem Phys 113(2):815–832. https://doi.org/10.1063/1.481857.

71. Qiao B, Krekeler C, Berger R, Delle Site L, Holm C (2008) Effect of Anions on Static Orientational Correlations, Hydro- gen Bonds, and Dynamics in Ionic Liquids: A Simulational Study. J Phys Chem B 112(6):1743–1751. https://doi.org/ 10.1021/jp0759067.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る