リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Alternating current electromagnetic field exposure lessens intramyocellular lipid accumulation due to high-fat feeding via enhanced lipid metabolism in mice」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Alternating current electromagnetic field exposure lessens intramyocellular lipid accumulation due to high-fat feeding via enhanced lipid metabolism in mice

Nakanishi, Ryosuke Tanaka, Masayuki Nisa, Badur un Shimizu, Sayaka Hirabayashi, Takumi Tanaka, Minoru Maeshige, Noriaki Roy, Roland R. Fujino, Hidemi 神戸大学

2023.11.27

概要

Long-term high-fat feeding results in intramyocellular lipid accumulation, leading to insulin resistance. Intramyocellular lipid accumulation is related to an energy imbalance between excess fat intake and fatty acid consumption. Alternating current electromagnetic field exposure has been shown to enhance mitochondrial metabolism in the liver and sperm. Therefore, we hypothesized that alternating current electromagnetic field exposure would ameliorate high-fat diet-induced intramyocellular lipid accumulation via activation of fatty acid consumption. C57BL/6J mice were either fed a normal diet (ND), a normal diet and exposed to an alternating current electromagnetic field (ND+EMF), a high-fat diet (HFD), or a high-fat diet and exposed to an alternating current electromagnetic field (HFD+EMF). Electromagnetic field exposure was administered 8 hrs/day for 16 weeks using an alternating current electromagnetic field device (max.180 mT, Hokoen, Utatsu, Japan). Tibialis anterior muscles were collected for measurement of intramyocellular lipids, AMPK phosphorylation, FAT/CD-36, and carnitine palmitoyltransferase (CPT)-1b protein expression levels. Intramyocellular lipid levels were lower in the HFD + EMF than in the HFD group. The levels of AMPK phosphorylation, FAT/CD-36, and CPT-1b protein levels were higher in the HFD + EMF than in the HFD group. These results indicate that alternating current electromagnetic field exposure decreases intramyocellular lipid accumulation via increased fat consumption.

この論文で使われている画像

参考文献

1.

Messa GAM, Piasecki M, Hurst J, Hill C, Tallis J, Degens H. The impact of a high-fat diet in mice is

dependent on duration and age, and differs between muscles. J Exp Biol. 2020; 223(Pt 6). jeb217117.

https://doi.org/10.1242/jeb.217117 PMID: 31988167

PLOS ONE | https://doi.org/10.1371/journal.pone.0289086 November 27, 2023

14 / 18

PLOS ONE

Electromagnetic field exposure reduces intramyocellular lipid accumulation due to high-fat feeding

2.

McGarry JD. What if Minkowski had been ageusic? An alternative angle on diabetes. Science. 1992;

258(5083):766–70. https://doi.org/10.1126/science.1439783 PMID: 1439783

3.

Dube JJ, Bhatt BA, Dedousis N, Bonen A, O’Doherty RM. Leptin, skeletal muscle lipids, and lipidinduced insulin resistance. American journal of physiology Regulatory, integrative and comparative

physiology. 2007; 293(2):R642–50. https://doi.org/10.1152/ajpregu.00133.2007 PMID: 17491114

4.

Ginsberg HN. Insulin resistance and cardiovascular disease. The Journal of clinical investigation. 2000;

106(4):453–8. https://doi.org/10.1172/JCI10762 PMID: 10953019

5.

Yaribeygi H, Farrokhi FR, Butler AE, Sahebkar A. Insulin resistance: Review of the underlying molecular

mechanisms. Journal of cellular physiology. 2019; 234(6):8152–61. https://doi.org/10.1002/jcp.27603

PMID: 30317615

6.

Turcotte LP, Swenberger JR, Zavitz Tucker M, Yee AJ. Increased fatty acid uptake and altered fatty

acid metabolism in insulin-resistant muscle of obese Zucker rats. Diabetes. 2001; 50(6):1389–96.

https://doi.org/10.2337/diabetes.50.6.1389 PMID: 11375340

7.

Schrauwen P. High-fat diet, muscular lipotoxicity and insulin resistance. Proceedings of the Nutrition

Society. 2007; 66(1):33–41. https://doi.org/10.1017/S0029665107005277 PMID: 17343770

8.

Stahl A, Gimeno RE, Tartaglia LA, Lodish HF. Fatty acid transport proteins: a current view of a growing

family. Trends in Endocrinology & Metabolism. 2001; 12(6):266–73. https://doi.org/10.1016/s10432760(01)00427-1 PMID: 11445444

9.

Lundsgaard A-M, Fritzen AM, Kiens B. Molecular regulation of fatty acid oxidation in skeletal muscle

during aerobic exercise. Trends in Endocrinology & Metabolism. 2018; 29(1):18–30. https://doi.org/10.

1016/s1043-2760(01)00427-1

10.

Hancock CR, Han D-H, Chen M, Terada S, Yasuda T, Wright DC, et al. High-fat diets cause insulin

resistance despite an increase in muscle mitochondria. Proceedings of the National Academy of Sciences. 2008; 105(22):7815–20. https://doi.org/10.1073/pnas.0802057105 PMID: 18509063

11.

Costford SR, Seifert EL, Bezaire V, F. Gerrits M, Bevilacqua L, Gowing A, et al. The energetic implications of uncoupling protein-3 in skeletal muscle. Applied Physiology, Nutrition, and Metabolism. 2007;

32(5):884–94. https://doi.org/10.1139/H07-063 PMID: 18059613

12.

Vidal-Puig A, Solanes G, Grujic D, Flier JS, Lowell BB. UCP3: an uncoupling protein homologue

expressed preferentially and abundantly in skeletal muscle and brown adipose tissue. Biochemical and

biophysical research communications. 1997; 235(1):79–82. https://doi.org/10.1006/bbrc.1997.6740

PMID: 9196039

13.

Demine S, Renard P, Arnould T. Mitochondrial uncoupling: a key controller of biological processes in

physiology and diseases. Cells. 2019; 8(8):795. https://doi.org/10.3390/cells8080795 PMID: 31366145

14.

Zhou M, Lin B-Z, Coughlin S, Vallega G, Pilch PF. UCP-3 expression in skeletal muscle: effects of exercise, hypoxia, and AMP-activated protein kinase. American Journal of Physiology-Endocrinology And

Metabolism. 2000; 279(3):E622–9. https://doi.org/10.1152/ajpendo.2000.279.3.E622 PMID: 10950831

15.

Putman CT, Dixon WT, Pearcey JA, MacLean IM, Jendral MJ, Kiricsi M, et al. Chronic low-frequency

stimulation upregulates uncoupling protein-3 in transforming rat fast-twitch skeletal muscle. American

Journal of Physiology-Regulatory, Integrative and Comparative Physiology. 2004; 287(6):R1419–26.

https://doi.org/10.1152/ajpregu.00421.2004 PMID: 15308491

16.

Yun H-Y, Lee T, Jeong Y. High-fat diet increases fat oxidation and promotes skeletal muscle fatty acid

transporter expression in exercise-trained mice. Journal of medicinal food. 2020; 23(3):281–8. https://

doi.org/10.1089/jmf.2019.4651 PMID: 32119806

17.

Marwick TH, Hordern MD, Miller T, Chyun DA, Bertoni AG, Blumenthal RS, et al. Exercise training for

type 2 diabetes mellitus: impact on cardiovascular risk: a scientific statement from the American Heart

Association. Circulation. 2009; 119(25):3244–62. https://doi.org/10.1161/CIRCULATIONAHA.109.

192521 PMID: 19506108

18.

Baek K-W, Cha H-J, Ock MS, Kim HS, Gim J-A, Park J-J. Effects of regular-moderate exercise on highfat diet-induced intramyocellular lipid accumulation in the soleus muscle of Sprague-Dawley rats. Journal of exercise rehabilitation. 2018; 14(1):32. https://doi.org/10.12965/jer.1835166.583 PMID:

29511650

19.

Blank M, Soo L. Enhancement of cytochrome oxidase activity in 60 Hz magnetic fields. Bioelectrochemistry and Bioenergetics. 1998; 45(2):253–9. https://doi.org/org/10.1016/S0302-4598(98)00086-5

20.

Iorio R, Delle Monache S, Bennato F, Di Bartolomeo C, Scrimaglio R, Cinque B, et al. Involvement of

mitochondrial activity in mediating ELF-EMF stimulatory effect on human sperm motility. Bioelectromagnetics. 2011; 32(1):15–27. https://doi.org/10.1002/bem.20602 PMID: 20690107

21.

Johannsen DL, Ravussin E. The role of mitochondria in health and disease. Current opinion in pharmacology. 2009; 9(6):780–6. https://doi.org/10.1016/j.coph.2009.09.002 PMID: 19796990

PLOS ONE | https://doi.org/10.1371/journal.pone.0289086 November 27, 2023

15 / 18

PLOS ONE

Electromagnetic field exposure reduces intramyocellular lipid accumulation due to high-fat feeding

22.

Benrick A., Wallenius V. and Asterholm I. W. Interleukin-6 mediates exercise-induced increase in insulin

sensitivity in mice. Experimental physiology. 2012; 97 (11):1224–35. https://doi.org/10.1113/

expphysiol.2012.065508 PMID: 22523382

23.

Barron AM, Tokunaga M, Zhang M-R, Ji B, Suhara T, Higuchi M. Assessment of neuroinflammation in a

mouse model of obesity and β-amyloidosis using PET. Journal of neuroinflammation. 2016; 13(1):1–14.

https://doi.org/10.1186/s12974-016-0700-x PMID: 27578213

24.

Fukuda T, Ito H, Yoshida T. Effect of the walnut polyphenol fraction on oxidative stress in type 2 diabetes mice. Biofactors. 2004; 21(1-4):251–3. https://doi.org/10.1002/biof.552210148 PMID: 15630205

25.

Hirabayashi T, Nakanishi R, Tanaka M, Nisa Bu, Maeshige N, Kondo H, et al. Reduced metabolic

capacity in fast and slow skeletal muscle via oxidative stress and the energy-sensing of AMPK/SIRT1 in

malnutrition. Physiological reports. 2021; 9(5):e14763. https://doi.org/10.14814/phy2.14763 PMID:

33650806

26.

Koopman R, Schaart G, Hesselink MK. Optimisation of oil red O staining permits combination with

immunofluorescence and automated quantification of lipids. Histochemistry and cell biology. 2001; 116

(1):63–8. https://doi.org/10.1007/s004180100297 PMID: 11479724

27.

Tanaka S, Hayashi T, Toyoda T, Hamada T, Shimizu Y, Hirata M, et al. High-fat diet impairs the effects

of a single bout of endurance exercise on glucose transport and insulin sensitivity in rat skeletal muscle.

Metabolism. 2007; 56(12):1719–28. https://doi.org/10.1016/j.metabol.2007.07.017 PMID: 17998027

28.

Nakanishi R, Tanaka M, Maeshige N, Kondo H, Roy RR, Fujino H. Nucleoprotein-enriched diet

enhances protein synthesis pathway and satellite cell activation via ERK1/2 phosphorylation in

unloaded rat muscles. Experimental physiology. 2021; 106(7):1587–96. https://doi.org/10.1113/

EP089337 PMID: 33878233

29.

Fujimoto T, Sugimoto K, Takahashi T, Yasunobe Y, Xie K, Tanaka M, et al. Overexpression of Interleukin-15 exhibits improved glucose tolerance and promotes GLUT4 translocation via AMP-Activated protein kinase pathway in skeletal muscle. Biochemical and biophysical research communications. 2019;

509(4):994–1000. https://doi.org/10.1016/j.bbrc.2019.01.024 PMID: 30654941

30.

Hara T, Toyoshima M, Hisano Y, Balan S, Iwayama Y, Aono H, et al. Glyoxalase I disruption and external carbonyl stress impair mitochondrial function in human induced pluripotent stem cells and derived

neurons. Translational psychiatry. 2021; 11(1):1–12. https://doi.org/10.1038/s41398-021-01392-w

PMID: 33966051

31.

Ueno M, Maeshige N, Hirayama Y, Yamaguchi A, Ma X, Uemura M, et al. Pulsed ultrasound prevents

lipopolysaccharide-induced muscle atrophy through inhibiting p38 MAPK phosphorylation in C2C12

myotubes. Biochemical and biophysical research communications. 2021; 570:184–90. https://doi.org/

10.1016/j.bbrc.2021.07.039 PMID: 34293592

32.

Faridvand Y, Haddadi P, Nejabati HR, Ghaffari S, Zamani-Gharehchamani E, Nozari S, et al. Sulforaphane modulates CX3CL1/CX3CR1 axis and inflammation in palmitic acid-induced cell injury in C2C12

skeletal muscle cells. Molecular Biology Reports. 2020; 47(10):7971–7. https://doi.org/10.1007/

s11033-020-05875-9 PMID: 33034881

33.

Theeuwes W, Gosker H, Langen R, Verhees K, Pansters N, Schols A, et al. Inactivation of glycogen

synthase kinase-3β (GSK-3β) enhances skeletal muscle oxidative metabolism. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease. 2017; 1863(12):3075–86. https://doi.org/10.1016/j.bbadis.

2017.09.018 PMID: 28943449

34.

Ma X, Yamaguchi A, Maeshige N, Uemura M, Noguchi H, Kondo H et al. Enhancement of astaxanthin

incorporation by pulsed high-intensity ultrasound in LPS-stimulated macrophages. Journal of Medical

Ultrasonics. 2022; 49(2):125–32. https://doi.org/10.1007/s10396-022-01189-4 PMID: 35089476

35.

Castillo JJ, Jelinek D, Wei H, Gannon NP, Vaughan RA, Horwood LJ, et al. Role of Adipose Tissue

Nutrient/Vitamin Metabolism in Physiological and Altered Metabolic Settings: The Niemann-Pick C1

gene interacts with a high-fat diet to promote weight gain through differential regulation of central energy

metabolism pathways. American Journal of Physiology-Endocrinology and Metabolism. 2017; 313(2):

E183. https://doi.org/10.1152/ajpendo.00369.2016 PMID: 28487438

36.

Koonen DP, Glatz JF, Bonen A, Luiken JJ. Long-chain fatty acid uptake and FAT/CD36 translocation in

heart and skeletal muscle. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids.

2005; 1736(3):163–80. https://doi.org/10.1016/j.bbalip.2005.08.018 PMID: 16198626

37.

Bonen A, Jain SS, Snook LA, Han X-X, Yoshida Y, Buddo KH, et al. Extremely rapid increase in fatty

acid transport and intramyocellular lipid accumulation but markedly delayed insulin resistance after high

fat feeding in rats. Diabetologia. 2015; 58(10):2381–91. https://doi.org/10.1007/s00125-015-3691-8

PMID: 26197708

38.

Smith AC, Mullen KL, Junkin KA, Nickerson J, Chabowski A, Bonen A, et al. Metformin and exercise

reduce muscle FAT/CD36 and lipid accumulation and blunt the progression of high-fat diet-induced

PLOS ONE | https://doi.org/10.1371/journal.pone.0289086 November 27, 2023

16 / 18

PLOS ONE

Electromagnetic field exposure reduces intramyocellular lipid accumulation due to high-fat feeding

hyperglycemia. American Journal of Physiology-Endocrinology and Metabolism. 2007; 293(1):E172–

E81. https://doi.org/10.1152/ajpendo.00677.2006 PMID: 17374701

39.

Turner N, Bruce CR, Beale SM, Hoehn KL, So T, Rolph MS, et al. Excess lipid availability increases

mitochondrial fatty acid oxidative capacity in muscle: evidence against a role for reduced fatty acid oxidation in lipid-induced insulin resistance in rodents. Diabetes. 2007; 56(8):2085–92. https://doi.org/10.

2337/db07-0093 PMID: 17519422

40.

Vaisy M, Szlufcik K, Maris M, De Bock K, Hesselink MK, Eijnde BO, et al. Hyperglycemic diet and training alter insulin sensitivity, intramyocellular lipid content but not UCP3 protein expression in rat skeletal

muscles. International journal of molecular medicine. 2010; 25(6):905–13. https://doi.org/10.3892/

ijmm_00000421 PMID: 20428795

41.

Chen L-L, Zhang H-H, Zheng J, Hu X, Kong W, Hu D, et al. Resveratrol attenuates high-fat diet–induced

insulin resistance by influencing skeletal muscle lipid transport and subsarcolemmal mitochondrial βoxidation. Metabolism. 2011; 60(11):1598–609. https://doi.org/10.1016/j.metabol.2011.04.002 PMID:

21632075

42.

Luiken JJ, Coort SL, Willems J, Coumans WA, Bonen A, van der Vusse GJ, et al. Contraction-induced

fatty acid translocase/CD36 translocation in rat cardiac myocytes is mediated through AMP-activated

protein kinase signaling. Diabetes. 2003; 52(7):1627–34. https://doi.org/10.2337/diabetes.52.7.1627

PMID: 12829625

43.

Habets DD, Coumans WA, Voshol PJ, den Boer MA, Febbraio M, Bonen A, et al. AMPK-mediated

increase in myocardial long-chain fatty acid uptake critically depends on sarcolemmal CD36. Biochemical and biophysical research communications. 2007; 355(1):204–10. https://doi.org/10.1016/j.bbrc.

2007.01.141 PMID: 17292863

44.

Lee WJ, Kim M, Park H-S, Kim HS, Jeon MJ, Oh KS, et al. AMPK activation increases fatty acid oxidation in skeletal muscle by activating PPARα and PGC-1. Biochemical and biophysical research communications. 2006; 340(1):291–5. https://doi.org/10.1016/j.bbrc.2005.12.011 PMID: 16364253

45.

Suwa M, Nakano H, Kumagai S. Effects of chronic AICAR administration on fiber composition, glycolytic

and oxidative enzyme activities and UCP3 and PGC-1 protein content in rat muscles. Journal of Applied

Physiology. 2003.; 95(3):960–8. https://doi.org/10.1152/japplphysiol.00349.2003 PMID: 12777406

46.

Hou Y, Su L, Zhao Y, Liu C, Yao D, Zhang M, et al. Effect of chronic AICAR treatment on muscle fiber

composition and enzyme activity in skeletal muscle of rats. Journal of Applied Animal Research. 2021;

49(1):89–96.

47.

Liu Y, Wan Q, Guan Q, Gao L, Zhao J. High-fat diet feeding impairs both the expression and activity of

AMPKa in rats’ skeletal muscle. Biochemical and biophysical research communications. 2006; 339

(2):701–7. https://doi.org/10.1016/j.bbrc.2005.11.068 PMID: 16316631

48.

Seo S, Lee M-S, Chang E, Shin Y, Oh S, Kim I-H, et al. Rutin increases muscle mitochondrial biogenesis with AMPK activation in high-fat diet-induced obese rats. Nutrients. 2015; 7(9):8152–69. https://doi.

org/10.3390/nu7095385 PMID: 26402699

49.

Hardie DG, Ross FA, Hawley SA. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nature reviews Molecular cell biology. 2012; 13(4):251–62. https://doi.org/10.1038/nrm3311

PMID: 22436748

50.

Fogarty S, Hardie D. Development of protein kinase activators: AMPK as a target in metabolic disorders

and cancer. Biochimica et biophysica acta (bba)-proteins and proteomics. 2010; 1804(3):581–91.

https://doi.org/10.1016/j.bbapap.2009.09.012 PMID: 19778642

51.

Rousset S, Alves-Guerra M-C, Mozo J, Miroux B, Cassard-Doulcier A-M, Bouillaud F, et al. The biology

of mitochondrial uncoupling proteins. Diabetes. 2004; 53(suppl 1):S130–S5. https://doi.org/10.2337/

diabetes.53.2007.s130 PMID: 14749278

52.

Gupte AA, Bomhoff GL, Swerdlow RH, Geiger PC. Heat treatment improves glucose tolerance and prevents skeletal muscle insulin resistance in rats fed a high-fat diet. Diabetes. 2009; 58(3):567–78. https://

doi.org/10.2337/db08-1070 PMID: 19073766

53.

Hinz W, Faller B, Gru¨ninger S, Gazzotti P, Chiesi M. Recombinant human uncoupling protein-3

increases thermogenesis in yeast cells. FEBS letters. 1999; 448(1):57–61. https://doi.org/10.1016/

s0014-5793(99)00331-2 PMID: 10217410

54.

Clapham JC, Arch JR, Chapman H, Haynes A, Lister C, Moore GB, et al. Mice overexpressing human

uncoupling protein-3 in skeletal muscle are hyperphagic and lean. Nature. 2000; 406(6794):415–8.

https://doi.org/10.1038/35019082 PMID: 10935638

55.

Boss O, Muzzin P, Giacobino J-P. The uncoupling proteins, a review. European Journal of Endocrinology. 1998; 139(1):1–9. https://doi.org/10.1530/eje.0.1390001 PMID: 9703368

56.

Tiraby C, Tavernier G, Capel F, Mairal A, Crampes F, Rami J, et al. Resistance to high-fat-diet-induced

obesity and sexual dimorphism in the metabolic responses of transgenic mice with moderate

PLOS ONE | https://doi.org/10.1371/journal.pone.0289086 November 27, 2023

17 / 18

PLOS ONE

Electromagnetic field exposure reduces intramyocellular lipid accumulation due to high-fat feeding

uncoupling protein 3 overexpression in glycolytic skeletal muscles. Diabetologia. 2007; 50(10):2190–9.

https://doi.org/10.1007/s00125-007-0765-2 PMID: 17676309

57.

Jørgensen SB, Richter EA, Wojtaszewski JF. Role of AMPK in skeletal muscle metabolic regulation

and adaptation in relation to exercise. The Journal of physiology. 2006; 574(1):17–31. https://doi.org/

10.1113/jphysiol.2006.109942 PMID: 16690705

58.

Kjøbsted R, Munk-Hansen N, Birk JB, Foretz M, Viollet B, Bjo¨rnholm M, et al. Enhanced muscle insulin

sensitivity after contraction/exercise is mediated by AMPK. Diabetes. 2017; 66(3):598–612. https://doi.

org/10.2337/db16-0530 PMID: 27797909

59.

Liu H-W, Chang S-J. Moderate exercise suppresses NF-κB signaling and activates the SIRT1-AMPKPGC1α axis to attenuate muscle loss in diabetic db/db mice. Frontiers in physiology. 2018; 9:636.

https://doi.org/10.3389/fphys.2018.00636 PMID: 29896118

PLOS ONE | https://doi.org/10.1371/journal.pone.0289086 November 27, 2023

18 / 18

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る