リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「象牙質における抗う蝕性イオンのマルチスケール解析」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

象牙質における抗う蝕性イオンのマルチスケール解析

内藤, 克昭 大阪大学 DOI:10.18910/82158

2021.03.24

概要

現在,高齢者における露出した根面象牙質に発生するう蝕が社会的な問題となっている[1–4].う蝕は,細菌由来の酸性代謝産物により象牙質の無機成分の崩壊を引き起こし,その結果発生するイオンが再石灰化に働くという,イオンの循環を示す複雑な病態である[5–9].それゆえ,う蝕の詳細な病態解明には,イオンの動的状態を捉えることが必要である.

象牙質は,エナメル質あるいはセメント質に囲まれた無機有機複合体であり,有機質であるⅠ型コラーゲン線維と無機質であるハイドロキシアパタイトナノ結晶と水分から構成されている[10,11].象牙質や骨などの生体アパタイト(BioAp)は,ハイドロキシアパタイト(HAp)だけでなく,リン酸オクタカルシウム(OCP)[12,13]や非晶質リン酸カルシウム(ACP)[14,15],第2リン酸カルシウム2水塩[16,17]など多様なリン酸カルシウム相を含有する極めて複雑な結晶である[18,19].さらに,象牙質のHApの内部には空孔に加えて,炭酸イオン(CO32-),マグネシウム(Mg),フッ化物(F),ナトリウム(Na),亜鉛(Zn)などの微量元素やイオンが含有されている[20–24].空孔や微量元素は,HApの結晶性や脱灰,再石灰化など,生体における化学的動態に複雑に関与していると考えられるが[25],これらの機能は,未だ一部分しか判明していない.

歯質の耐酸性に対するFの有効性は,invitroの研究だけでなく[26],歯磨剤や水道水のフロリデーションを通じてFを歯質内へ導入することにより,疫学的にう蝕予防に成功している[27–31].しかし,先進国においては成人における根面う蝕の増加を認めるなど,う蝕の撲滅はできていない[32].これらを背景に昨今,F単独よりも他元素と組み合わせることで,歯質のさらなる抗う蝕性の向上が期待され始めている[33–37].Fと組み合わせる微量元素として,SrやZn,Sn,Tiなどが候補として挙げられ,本研究では,とくにZnに着目した.Znは12族元素であり,d軌道が閉殻されており,MgやSrを代表とするアルカリ土類金属と同様の性質を示す[38–40].Caと同族であるMgやSrに関しては,象牙質に対しての作用が数多く報告されている[41,42].一方,Znの抗う蝕性については,抗菌作用[43],マトリックスメタロプロテアーゼ阻害作用[44],脱灰抑制作用[45]などが報告されているが,原子スケールを含めた詳細なメカニズムの解析はほとんどされていなかった.

近年,げっ歯類のエナメル質においてAtom probe tomographyを用いた原子スケールでのイオン分布解析により,結晶粒界に存在するMg-ACPにFが置換することで抗う蝕作用を発揮することが報告された[35].この成果は,原子スケールでのイオン動態を解明することで,これまでのう蝕予防および治療方法が大きく変わる可能性を示したものである.象牙質は,無機成分として多様な結晶と40wt%近い有機成分から成り,構造的に複雑であるため,これまでの汎用的な手法では原子スケールでのイオン動態を捉えることが困難であった[46].象牙質の結晶構造へのイオン動態については,X線回折法(XRD)による長距離秩序の解析[47]や透過型電子顕微鏡(TEM)による観察が行われているが[48–50],これらの手法では,周期的な構造変化を評価できるが,イオン置換に本質的に関与している局所構造を見落としている可能性がある.

そこで本研究では,大気陽子線励起X線/ガンマ線分析法(In-airμ-PIXE/PIGE)およびX線吸収微細構造測定(XAFS)を用いて,人為的に象牙質内に導入した抗う蝕性イオンの分布,結合状態,および機能を解析することを目的とした.Inairμ-PIXE/PIGE法は,陽子線の衝突により発生する蛍光X線およびガンマ線を計測することで,軽元素を含む多元素を大気中で高感度に検出できる[51–56].また,歯質内の元素分布および濃度を非破壊的かつ経時的に分析することができる.XAFSは,X線を照射し,対象物の電子状態や,化学結合状態を探索する手法であり,ガラスのような非晶質な材料であっても各構成元素周囲の構造を同定することができ,微量な元素に対する感度も高い[57,58].

これらのイオン動態の解析に加えて,従来の走査型電子顕微鏡(SEM)による形態観察,マイクロコンピュータ断層撮影法(μCT)による非破壊構造解析,XRDによる長距離秩序解析,X線光電子分光法(XPS)による化学結合状態分析を合わせることにより,マルチスケールでのイオンの動態解析を実現することが可能となる.さらにこのマルチスケール解析によって,う蝕における脱灰と再石灰化に伴う化学的な反応を材料から溶出するイオンで能動的に制御し,う蝕の予防および進行抑制を達成する方法を模索することができる.本研究では,旧来の画一的な治療方法である”drillandfill”から脱却し,イオン動態の見地から生物学的なアプローチに基づく削らないう蝕治療を実現することを目ざしている.

参考文献

[1] M.E.J. Curzon, A.J. Preston, Risk groups: Nursing bottle caries/caries in the elderly, Caries Res. 38 (2004) 24–33.

[2] I.B. Lamster, L. Asadourian, T. Del Carmen, P.K. Friedman, The aging mouth: differentiating normal aging from disease, Periodontol. 2000. 72 (2016) 96–107.

[3] N. Takahashi, B. Nyvad, Ecological hypothesis of dentin and root caries, Caries Res. 50 (2016) 422–431.

[4] R.J. Wierichs, H. Meyer-Lueckel, Systematic review on noninvasive treatment of root caries lesions, J. Dent. Res. 94 (2015) 261–271.

[5] I. Bignozzi, A. Crea, D. Capri, C. Littarru, C. Lajolo, D.N. Tatakis, Root caries: A periodontal perspective, J. Periodontal Res. 49 (2014) 143–163.

[6] J. Hicks, F. Garcia-Godoy, C. Flaitz, Biological factors in dental caries enamel structure and the caries process in the dynamic process of demineralization and remineralization (part 2), J. Clin. Pediatr. Dent. 28 (2004) 119–124.

[7] R. Lefèvre, R.M. Frank, J.C. Voegel, The study of human dentine with secondary ion microscopy and electron diffraction, Calcif. Tissue Res. 19 (1975) 251–261.

[8] N.B. Pitts, D.T. Zero, P.D. Marsh, K. Ekstrand, J.A. Weintraub, F. Ramos-Gomez, J. Tagami, S. Twetman, G. Tsakos, A. Ismail, Dental caries, Nat. Rev. Dis. Prim. 3 (2017) 17030.

[9] I.A. Pretty, R.P. Ellwood, The caries continuum: Opportunities to detect, treat and monitor the re-mineralization of early caries lesions, J. Dent. 41 (2013) S12–S21.

[10] A. Linde, M. Goldberg, Dentinogenesis, Crit. Rev. Oral Biol. Med. 4 (1993) 679–728.

[11] D.H. Pashley, Dynamics of the pulpo-dentin complex, Crit. Rev. Oral Biol. Med. 7 (1996) 104–133.

[12] W.E. Brown, Crystal growth of bone mineral, Clin. Orthop. Relat. Res. 44 (1966) 205– 20

[13] E.D. Pellegrino, R.M. Biltz, Mineralization in the chick embryo. I. Monohydrogen phosphate and carbonate relationships during maturation of the bone crystal complex. Calcif. Tissue Res. 10 (1972) 128–135.

[14] J.D. Termine, E.D. Eanes, Comparative chemistry of amorphous and apatitic calcium phosphate preparations, Calcif. Tissue Res. 10 (1972) 171–197.

[15] M.S. Tung, F.C. Eichmiller, Amorphous calcium phosphates for tooth mineralization. Compend. Contin. Educ. Dent. 25 (2004) 9–13.

[16] M.D. Francis, Solubility behavior of dental enamel and other calcium phosphates, Ann. N. Y. Acad. Sci. 131 (1965) 694–712.

[17] R.S. Levine, Remineralization of human carious dentine in vitro, Arch. Oral Biol. 17 (1972) 1005–1008.

[18] P. Houllé, J.C. Voegel, P. Schultz, P. Steuer, F.J.G. Cuisinier, High resolution electron microscopy: Structure and growth mechanisms of human dentin crystals, J. Dent. Res. 76 (1997) 895–904.

[19] P. Bodier-Houllé, P. Steuer, J.C. Voegel, F.J.G. Cuisinier, First experimental evidence for human dentine crystal formation involving conversion of octacalcium phosphate to hydroxyapatite, Acta Crystallogr. Sect. D Biol. Crystallogr. 54 (1998) 1377–1381.

[20] R.A. Young, S. Spooner, Neutron diffraction studies of human tooth enamel, Arch. Oral Biol. 15 (1970) 47–63.

[21] E.L. Lakomaa, I. Rytömaa, Mineral composition of enamel and dentin of primary and permanent teeth in Finland., Scand. J. Dent. Res. 85 (1977) 89–95.

[22] G. Penel, G. Leroy, C. Rey, E. Bres, MicroRaman spectral study of the PO4 and CO3 vibrational modes in synthetic and biological apatites, Calcif. Tissue Int. 63 (1998) 475– 481.

[23] N.L. Derise, S.J. Ritchey, Mineral composition of normal human enamel and dentin and the relation of composition to dental caries: II. Microminerals, J. Dent. Res. 53 (1974) 853–858.

[24] A.C. Fernández-Escudero, I. Legaz, G. Prieto-Bonete, M. López-Nicolás, A. MaurandiLópez, M.D. Pérez-Cárceles, Aging and trace elements in human coronal tooth dentine, Sci. Rep. 10 (2020) 1–14.

[25] S. Weiner, H.D. Wagner, The material bone: Structure-mechanical function relations, Annu. Rev. Mater. Sci. 28 (1998) 271–298.

[26] J.M. Ten Cate, Review on fluoride, with special emphasis on calcium fluoride mechanisms in caries prevention, Eur. J. Oral Sci. 105 (1997) 461–465.

[27] H.T. Dean, J. Francis A. Arnold, E. Elvove, Domestic Water and Dental Caries: V. Additional studies of the relation of fluoride domestic waters to dental caries experience in 4,425 white children, aged 12 to 14 years, of 13 cities in 4 states, Public Heal. Reports. 57 (1942) 1155–1179.

[28] M.S. McDonagh, J. Kleijnen, P.F. Whiting, P.M. Wilson, A.J. Sutton, I. Chestnutt, J. Cooper, K. Misso, M. Bradley, E. Treasure, Systematic review of water fluoridation, Br. Med. J. 321 (2000) 855–859.

[29] V.C.C. Marinho, J. Higgins, S. Logan, A. Sheiham (deceased), Fluoride toothpastes for preventing dental caries in children and adolescents, Cochrane Database Syst. Rev. (2003).

[30] D.M. O’Mullane, R.J. Baez, S. Jones, M.A. Lennon, P.E. Petersen, A.J. Rugg-Gunn, H. Whelton, G.M. Whitford, Fluoride and oral health, Community Dent. Health. 33 (2016) 69–99.

[31] H.P. Whelton, A.J. Spencer, L.G. Do, A.J. Rugg-Gunn, Fluoride revolution and dental caries: evolution of policies for global use, J. Dent. Res. 98 (2019) 837–846.

[32] W. Marcenes, N.J. Kassebaum, E. Bernabé, A. Flaxman, M. Naghavi, A. Lopez, C.J.L. Murray, Global burden of oral conditions in 1990-2010: A systematic analysis, J. Dent. Res. 92 (2013) 592–597.

[33] C. González-Cabezas, C.E. Fernández, Recent advances in remineralization therapies for caries lesions, Adv. Dent. Res. 29 (2018) 55–59.

[34] A. Lussi, T.S. Carvalho, The future of fluorides and other protective agents in erosion prevention, Caries Res. 49 (2015) 18–29.

[35] L.M. Gordon, M.J. Cohen, K.W. MacRenaris, J.D. Pasteris, T. Seda, D. Joester, Amorphous intergranular phases control the properties of rodent tooth enamel, Science. 347 (2015) 746–750.

[36] F. Lippert, Mechanistic observations on the role of the stannous ion in caries lesion deand remineralization, Caries Res. 50 (2016) 378–382.

[37] T. Takatsuka, J. Hirano, H. Matsumoto, T. Honma, X-Ray absorption fine structure analysis of the local environment of zinc in dentine treated with zinc compounds, Eur. J. Oral Sci. 113 (2005) 180–183.

[38] A. Ito, K. Ojima, H. Naito, N. Ichinose, T. Tateishi, Preparation, solubility, and cytocompatibility of zinc-releasing calcium phosphate ceramics, J. Biomed. Mater. Res. 50 (2000) 178–183.

[39] A. Ito, H. Kawamura, S. Miyakawa, P. Layrolle, N. Kanzaki, G. Treboux, K. Onuma, S. Tsutsumi, Resorbability and solubility of zinc-containing tricalcium phosphate, J. Biomed. Mater. Res. 60 (2002) 224–231.

[40] F. Miyaji, Y. Kono, Y. Suyama, Formation and structure of zinc-substituted calcium hydroxyapatite, Mater. Res. Bull. 40 (2005) 209–220.

[41] H.P. Wiesmann, T. Tkotz, U. Joos, K. Zierold, U. Stratmann, T. Szuwart, U. Plate, H.J. Höhling, Magnesium in newly formed mineral of rat incisor, J. Bone Miner. Res. 12 (1997) 380–383.

[42] F. Lippert, A.T. Hara, Strontium and caries: A long and complicated relationship, Caries Res. 47 (2013) 34–49.

[43] G. He, E.I. Pearce, C.H.M Sissons, Inhibitory effect of ZnCl2 on glycolysis in human oral microbes, Arch Oral Biol. 47 (2002) 117–129.

[44] M. Toledano, M. Yamauti, E. Osorio, R. Osorio, Zinc-inhibited MMP-mediated collagen degradation after different dentine demineralization procedures, Caries Res. 46 (2012) 201–207.

[45] T. Takatsuka, K. Tanaka, Y Iijima, Inhibition of dentine demineralization by zinc oxide: in vitro and in situ studies, Dent Mater. 21 (2005) 1170–1177.

[46] T. Yanagisawa, Y. Miake, High-resolution electron microscopy of enamel-crystal demineralization and remineralization in carious lesions, J. Electron Microsc. 52 (2003) 605–613.

[47] J. Xue, A.V. Zavgorodniy, B.J. Kennedy, M. V. Swain, W. Li, X-ray microdiffraction, TEM characterization and texture analysis of human dentin and enamel, J. Microsc. 251 (2013) 144–153.

[48] J.C. Voegel, R.M. Frank, Ultrastructural study of apatite crystal dissolution in human dentine and bone., J. Biol. Buccale. 5 (1977) 181–194.

[49] H. Nakahara, Electron microscopic studies of the lattice image and “central dark line” of crystallites in sound and carious human dentin., Josai Shika Daigaku Kiyo. 11 (1982) 209–215.

[50] M. Toledano, M. Toledano-Osorio, A.L. Medina-Castillo, M.T. López-López, F.S. Aguilera, R. Osorio, Ion-modified nanoparticles induce different apatite formation in cervical dentine, Int. Endod. J. 51 (2018) 1019–1029.

[51] H. Yamamoto, M. Nomachi, K. Yasuda, Y. Iwami, S. Ebisu, N. Yamamoto, T. Sakai, T. Kamiya, Fluorine mapping of teeth treated with fluorine-releasing compound using PIGE, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms. 210 (2003) 388–394.

[52] K. Yasuda, V.H. Hai, M. Nomachi, Y. Sugaya, H. Yamamoto, In-air micro-PIGE measurement system for fluorine analysis of the tooth, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms. 260 (2007) 207–212.

[53] H. Komatsu, H. Yamamoto, M. Nomachi, K. Yasuda, Y. Matsuda, Y. Murata, T. Kijimura, H. Sano, T. Sakai, T. Kamiya, Fluorine uptake into human enamel around a fluoride-containing dental material during cariogenic pH cycling, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms. 260 (2007) 201–206.

[54] H. Komatsu, H. Yamamoto, M. Nomachi, K. Yasuda, Y. Matsuda, M. Kinugawa, T. Kijimura, H. Sano, T. Satou, S. Oikawa, T. Kamiya, Fluorine uptake into human enamel around fluoride-containing dental materials during cariogenic pH cycling, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms. 267 (2009) 2136–2139.

[55] K. Okuyama, H. Komatsu, H. Yamamoto, P.N.R. Pereira, A.K. Bedran-Russo, M. Nomachi, T. Sato, H. Sano, Fluorine analysis of human dentin surrounding resin composite after fluoride application by μ-PIGE/PIXE analysis, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms. 269 (2011) 2269–2273.

[56] M. Yasuhiro, O. Katsushi, Y. Hiroko, K. Hisanori, K. Masashi, S. Takahiro, H. Naoki, O. Saiko, K. Chiharu, S. Hidehiko, Fluorine uptake into the human enamel surface from fluoride-containing sealing materials during cariogenic pH cycling, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms. 348 (2015) 156–159.

[57] D.C. Koningsberger, X-ray absorption: principles, applications, techniques of EXAFS, SEXAFS, and XANES, John Wiley and Sons, United States, 1988.

[58] F. De Groot, High-resolution X-ray emission and X-ray absorption spectroscopy, Chem. Rev. 101 (2001) 1779–1808.

[59] J.W. McLean, A.D. Wilson, Glass ionomer cements, Br. Dent. J. 196 (2004) 514–515.

[60] S.G. Griffin, R.G. Hill, Influence of glass composition on the properties of glass polyalkenoate cements. Part I: Influence of aluminium to silicon ratio, Biomaterials. 20 (1999) 1579–1586.

[61] K. Yagi, H. Yamamoto, R. Uemura, Y. Matsuda, K. Okuyama, T. Ishimoto, T. Nakano, M. Hayashi, Use of PIXE/PIGE for sequential Ca and F measurements in root carious model, Sci. Rep. 7 (2017) 13450.

[62] H. Komatsu, H. Yamamoto, Y. Matsuda, T. Kijimura, M. Kinugawa, K. Okuyama, M. Nomachi, K. Yasuda, T. Satoh, S. Oikawa, Fluorine analysis of human enamel around fluoride-containing materials under different pH-cycling by μ-PIGE/PIXE system, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms. 269 (2011) 2274–2277.

[63] S.O.F. Dababneh, K. Toukan, I. Khubeis, Excitation function of the nuclear reaction 19F(p, αγ)16O in the proton energy range 0.3-3.0 MeV, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms. 83 (1993) 319–324.

[64] T. Sakai, T. Kamiya, M. Oikawa, T. Sato, A. Tanaka, K. Ishii, JAERI Takasaki in-air micro-PIXE system for various applications, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms. 190 (2002) 271–275.

[65] R Core Team, R: A Language and Environment for Statistical Computing, (2019) https://www.r-project.org/.

[66] H. Wickham, ggplot2: Elegant Graphics for Data Analysis, Springer-Verlag New York, (2016) https://ggplot2.tidyverse.org.

[67] K. Matsunaga, H. Murata, T. Mizoguchi, Atsushi Nakahira, Mechanism of incorporation of zinc into hydroxyapatite, Acta Biomater. 6 (2010) 2289–2293.

[68] D.A. Shirley, High-resolution x-ray photoemission spectrum of the valence bands of gold, Phys. Rev. B. 5 (1972) 4709–4714.

[69] Y. Kuwahara, Y. Yoshimura, K. Haematsu, H. Yamashita, Mild deoxygenation of sulfoxides over plasmonic molybdenum oxide hybrid with dramatic activity enhancement under visible light, J. Am. Chem. Soc. 140 (2018) 9203–9210.

[70] B. Ravel, M. Newville, ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT, J. Synchrotron Radiat. 12 (2005) 537–541.

[71] Y. Xu, M. Yamazaki, P. Villars, Inorganic materials database for exploring the nature of material, Jpn. J. Appl. Phys. 50 (2011) 11RH02.

[72] J.J. Rehr, R.C. Albers, Theoretical approaches to x-ray absorption fine structure, Rev. Mod. Phys. 72 (2000) 621–654.

[73] K. Matsunaga, First-principles study of substitutional magnesium and zinc in hydroxyapatite and octacalcium phosphate, J. Chem. Phys. 128 (2008) 245101.

[74] 長村 光造, 材料組織学, 朝倉書店, 東京, (1991) 63-65.

[75] J.M. Wilson, B.W. Fry, R.E. Walton, L.P. Gangarosa, Fluoride levels in dentin after iontophoresis of 2% NaF, J. Dent. Res. 63 (1984) 897–900.

[76] C.T. Coffey, M.J. Ingram, A.M. Bjorndal, Analysis of human dentinal fluid, Oral Surgery, Oral Med. Oral Pathol. 30 (1970) 835–837.

[77] H. Yamamoto, Y. Iwami, T. Unezaki, Y. Tomii, S. Ebisu, Fluoride uptake in human teeth from fluoride-releasing restorative material in vivo and in vitro: two-dimensional mapping by EPMA-WDX, Caries Res. 35 (2001) 111–115.

[78] K. Matsunaga, H. Murata, Strontium substitution in bioactive calcium phosphates: A first-principles study, J. Phys. Chem. B. 113 (2009) 3584–3589.

[79] K. Sudarsanan, R.A. Young, Structure of strontium hydroxide phosphate, Sr5(PO4)3OH , Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 28 (1972) 3668–3670.

[80] F. Ren, R. Xin, X. Ge, Y. Leng, Characterization and structural analysis of zincsubstituted hydroxyapatites, Acta Biomater. 5 (2009) 3141–3149.

[81] R.Z. LeGeros, C.B. Bleiwas, M. Retino, R. Rohanizadeh, J.P. LeGeros, Zinc effect on the in vitro formation of calcium phosphates: relevance to clinical inhibition of calculus formation., Am. J. Dent. 12 (1999) 65–71.

[82] A. Bigi, E. Foresti, M. Gandolfi, M. Gazzano, N. Roveri, Isomorphous substitutions in β-tricalcium phosphate: The different effects of zinc and strontium, J. Inorg. Biochem. 66 (1997) 259–265.

[83] X. Zhao, Y. Zhu, Z. Zhu, Y. Liang, Y. Niu, J. Lin, Characterization, dissolution, and solubility of Zn-substituted hydroxylapatites [(ZnxCa1−x)5(PO4)3OH] at 25 °C, J. Chem. 2017 (2017) 4619159.

[84] M. Hayashi, E.V. Koychev, K. Okamura, A. Sugeta, C. Hongo, K. Okuyama, S. Ebisu, Heat treatment strengthens human dentin, J. Dent. Res. 87 (2008) 762–766.

[85] J.D. Termine, R.A. Peckauskas, A.S. Posner, Calcium phosphate formation in vitro. II. Effects of environment on amorphous-crystalline transformation, Arch. Biochem. Biophys. 140 (1970) 318–325.

[86] M. Boulet, J.R. Marier, D. Rose, Effect of magnesium on formation of calcium phosphate precipitates, Arch. Biochem. Biophys. 96 (1962) 629–636.

[87] E.A.A. Neel, A. Aljabo, A. Strange, S. Ibrahim, M. Coathup, A.M. Young, L. Bozec, V. Mudera, Demineralization–remineralization dynamics in teeth and bone, Int. J. Nanomedicine. 11 (2016) 4743–4763.

[88] R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr. Sect. A. 32 (1976) 751–767.

[89] D.A. McKeown, I.S. Muller, A.C. Buechele, I.L. Pegg, Local environment of Zn in zirconium borosilicate glasses determined by X-ray absorption spectroscopy, J. Non. Cryst. Solids. 261 (2000) 155–162.

[90] J.A. Biscardi, E. Iglesia, Reaction pathways and rate-determining steps in reactions of alkanes on H-ZSM5 and Zn/H-ZSM5 catalysts, J. Catal. 182 (1999) 117–128.

[91] Y. Tang, H.F. Chappell, M.T. Dove, R.J. Reeder, Y.J. Lee, Zinc incorporation into hydroxylapatite, Biomaterials. 30 (2009) 2864–2872.

[92] B. Ravel, S.D. Kelly, The difficult chore of measuring coordination by EXAFS, AIP Conf. Proc. 882 (2007) 150–152.

[93] K. Matsunaga, First-principles study of substitutional magnesium and zinc in hydroxyapatite and octacalcium phosphate, J. Chem. Phys. 128 (2008) 245101

[94] W.E. Brown, Octacalcium phosphate and hydroxyapatite: Crystal structure of octacalcium phosphate, Nature. 196 (1962) 1048–1050.

[95] S. Cazalbou, D. Eichert, X. Ranz, C. Drouet, C. Combes, M.F. Harmand, C. Rey, Ion exchanges in apatites for biomedical application, J. Mater. Sci. Mater. Med. 16 (2005) 405–409.

[96] A.D. Wilson, S. Crisp, Ionomer cements, Br. Polym. J. 7 (1975) 279–296.

[97] 齋藤 太郎,化学の基本概念 理系基礎化学,裳華房,東京,(2013) 65-71.

[98] L.M. Gordon, L. Tran, D. Joester, Atom probe tomography of apatites and bone-type mineralized tissues, ACS Nano. 6 (2012) 10667–10675.

[99] F.J.G. Cuisinier, P. Steuer, J.C. Voegel, F. Apfelbaum, I. Mayer, Structural analyses of carbonate-containing apatite samples related to mineralized tissues, J. Mater. Sci. Mater. Med. 6 (1995) 85–89.

[100] I. Mayer, J.D.B. Featherstone, Dissolution studies of Zn-containing carbonated hydroxyapatites, J. Cryst. Growth. 219 (2000) 98–101.

[101] R.Z. LeGeros, Apatites in biological systems, Prog. Cryt. Growth. Charact. 4 (1981) 1–45.

[102] H. Tohda, S. Takuma, N. Tanaka, Intracrystalline structure of enamel crystals affected by caries, J. Dent. Res. 66 (1987) 1647–1653.

[103] K.A. DeRocher, P.J.M. Smeets, B.H. Goodge, M.J. Zachman, P.V. Balachandran, L. Stegbauer, M.J. Cohen, L.M. Gordon, J.M. Rondinelli, L.F. Kourkoutis, D. Joester, Chemical gradients in human enamel crystallites, Nature. 583 (2020) 66–71.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る