リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Field surveys of September 2018 landslide‑generated wavesin the Apporo dam reservoir, Japan: combined hazard from the concurrent occurrences of a typhoon and an earthquake」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Field surveys of September 2018 landslide‑generated wavesin the Apporo dam reservoir, Japan: combined hazard from the concurrent occurrences of a typhoon and an earthquake

Hiroshi Takagi 東京工業大学 DOI:https://doi.org/10.1007/s10346-022-01959-8

2022.09.05

概要

We report and analyze a case study of landslide-generated waves that occurred in the Apporo dam reservoir (Hokkaido, Japan) culminating from the rare incident of hazard combination from the September 2018 Typhoon Jebi and Hokkaido earthquake (Mw 6.6 on 5 September 2018). The typhoon and earthquake were concurrent and produced thousands of landslides in the area by the combined effects of soil saturation and ground acceleration. Here, we report the results of our field surveys of the landslides that occurred around the Apporo dam and generated damaging waves in the reservoir. We identified six landslides at a close distance to the dam body; the largest one has a length of 330 m, a maximum width of 140 m and a volume of 71,400m3. We measured wave runup at a single point with height of 5.3 m for the landslide-generated wave in the reservoir and recorded the damage made to the revetments at the reservoir banks. By consider- ing the locations of the landslides and their potential propagation paths, we speculate that possibly three of the six surveyed landslides contributed to the measured wave runup. The surveyed runup was reproduced by inputting landslide parameters into two independent empirical equations; however, other independent empirical relation- ships failed to reproduce the observed runup. Our field data from the Apporo dam can be used to improve the quality of predictions made by empirical equations and to encourage further research on this topic. In addition, our field data serves as a call for strengthening dams’ safety to landslide-generated waves in reservoirs.

この論文で使われている画像

参考文献

Adams K, Heidarzadeh M (2021) A multi-hazard risk model with cascad- ing failure pathways for the Dawlish (UK) railway using historical and contemporary data. Int J Disaster Risk Reduct 56:102082. https://doi. org/10.1016/j.ijdrr.2021.102082

Alcantara-Ayala I, Dominguez-Morales L (2008) The San Juan de Grijalva catastrophic landslide, Chiapas, Mexico: lessons learnt. Edited by: Casagli N, Fanti R, Tofani V. Proc First World Landslide Forum

Aimaiti Y, Liu W, Yamazaki F, Maruyama Y (2019) Earthquake-induced landslide mapping for the 2018 Hokkaido Eastern Iburi Earthquake Using PALSAR-2 data. Remote Sensing 11(20):2351

Ataie-Ashtiani B, Yavari-Ramshe S (2011) Numerical simulation of wave generated by landslide incidents in dam reservoirs. Landslides 8(4):417–432

Ataie-Ashtiani B, Nik-Khah A (2008) Impulsive waves caused by subaerial landslides. Environ Fluid Mech 8(3):263–280

Barla G, Paronuzzi P (2013) The 1963 Vajont landslide: 50th anniversary. Rock Mech Rock Eng 46(6):1267–1270

Bosa S, Petti M (2011) Shallow water numerical model of the wave gen- erated by the Vajont landslide. Environ Model Softw 26(4):406–418 Chang M, Zhou Y, Zhou C, Hales TC (2021) Coseismic landslides induced by the 2018 M w 6.6 Iburi, Japan, Earthquake: spatial distribution, key factors weight, and susceptibility regionalization. Landslides 18(2):755–772

Chen G, Xia M, Thuy DT, Zhang Y (2021) A possible mechanism of earthquake- induced landslides focusing on pulse-like ground motions. Landslides 18(5):1641–1657

Dziewonski AM, Chou T-A, Woodhouse JH (1981) Determination of earth- quake source parameters from waveform data for studies of global and regional seismicity. J Geophys Res 86(B4):2825–2852. https://doi. org/10.1029/JB086iB04p02825

Ekström G, Nettles M, Dziewonski AM (2012) The global CMT project 2004–2010: Centroid-moment tensors for 13,017 earthquakes. Phys Earth Planet Inter 200–201:1–9. https://doi.org/10.1016/j.pepi.2012. 04.002

Ersoy H, Karahan M, Gelişli K, Akgün A, Anılan T, Sünnetci MO, Yahşi BK (2019) Modelling of the landslide-induced impulse waves in the Artvin Dam reservoir by empirical approach and 3D numerical simulation. Eng Geol 249:112–128

Evers FM, Boes RM (2019) Impulse Wave Runup on Steep to Vertical Slopes. Journal of Marine Science and Engineering 7(1):8. https://doi. org/10.3390/jmse7010008

Evers F, Heller V, Fuchs H, Hager WH, Boes R (2019a) Land- slide-generated Impulse Waves in Reservoirs: Basics and Computation. VAW-Mitteilungen 254

Evers FM, Hager WH, Boes RM (2019b) Spatial Impulse Wave Generation and Propagation. J Waterw Port Coast Ocean Eng 145:04019011

Franco A, Schneider-Muntau B, Roberts NJ, Clague JJ, Gems B (2021) Geometry-based preliminary quantification of landslide-induced impulse wave attenuation in mountain lakes. Appl Sci 11(24):11614. https://doi.org/10.3390/app112411614

Fritz HM, Kalligeris N, Borrero JC, Broncano P, Ortega E (2008) The 15 August 2007 Peru tsunami runup observations and modeling. Geo- phys Res Lett 35(10)

Fritz HM, Hager WH, Minor HE (2004) Near field characteristics of land- slide generated impulse waves. J Waterw Port Coast Ocean Eng 130(6):287–302

Gill JC, Malamud BD (2016) Hazard interactions and interaction networks (cascades) within multi-hazard methodologies. Earth System Dynam- ics 7(3):659–679

Heidarzadeh, M., Feizi, S. (2022). A cascading risk model for the failure of the concrete spillway of the Toddbrook dam, England during the August 2019 flooding. Int J Disast Risk Reduct 80:103214. https://doi. org/10.1016/j.ijdrr.2022.103214

Heidarzadeh, M., Gusman, A., Ishibe, T., Sabeti, R., Šepić, J. (2022). Esti-mating the eruption-induced water displacement source of the 15 January 2022 Tonga volcanic tsunami from tsunami spectra and numerical modelling. Ocean Eng 261:112165. https://doi.org/10. 1016/j.oceaneng.2022.112165

Heidarzadeh M, Teeuw R, Day S, Solana C (2018) Storm wave runups and sea level variations for the September 2017 Hurricane Maria along the coast of Dominica, eastern Caribbean Sea: evidence from field surveys and sea level data analysis. Coast Eng J 60(3):371–384. https://doi.org/ 10.1080/21664250.2018.1546269

Heidarzadeh M, Putra PS, Nugroho HS, Rashid DBZ (2020) Field survey of tsunami heights and runups following the 22 December 2018 Anak Krakatau volcano tsunami, Indonesia. Pure Appl Geophys 177:4577– 4595. https://doi.org/10.1007/s00024-020-02587-w

Heidarzadeh M, Muhari A, Wijanarto AB (2019) Insights on the source of the 28 September 2018 Sulawesi tsunami, Indonesia based on spectral analyses and numerical simulations. Pure Appl Geophys 176:25–43. https://doi.org/10.1007/s00024-018-2065-9

Heidarzadeh M, Rabinovich AB (2021) Combined Hazard of Typhoon- Generated Meteorological Tsunamis and Storm Surges along the Coast of Japan. Nat Hazards 106:1639–1672. https://doi.org/10.1007/ s11069-020-04448-0

Heidarzadeh M, Satake K (2015) Source properties of the 17 July 1998 Papua New Guinea tsunami based on tide gauge records. Geophys J Int 202(1):361–369. https://doi.org/10.1093/gji/ggv145

Heller V, Hager WH (2010) Impulse product parameter in landslide gen- erated impulse waves. J Waterw Port Coast Ocean Eng 136:145–155

Heller V, Hager WH (2014) A universal parameter to predict subaerial landslide tsunamis? J Mar Sci Eng 2(2):400–412

Heller V, Spinneken J (2015) On the effect of the water body geometry on landslide–tsunamis: Physical insight from laboratory tests and 2D to 3D wave parameter transformation. Coast Eng 104:113–134

Heller V, Hager WH, Minor HE (2008) Scale effects in subaerial landslide generated impulse waves. Exp Fluids 44(5):691–703

Hermanns RL, Oppikofer T, Roberts NJ, Sandøy G (2014) Catalogue of historical displacement waves and landslide-triggered tsunamis in Norway. In: G. Lollino et al. (eds.), Engineering Geology for Society and Territory – Volume 4. https://doi.org/10.1007/978-3-319-08660-6_13 Huang B, Yin Y, Liu G, Wang S, Chen X, Huo Z (2012) Analysis of waves generated by Gongjiafang landslide in Wu Gorge, three Gorges res-ervoir, on November 23, 2008. Landslides 9(3):395–405

Japan Commission on Large Dams (2018) Dams in Japan: overview 2018. Online materials at: https://jcold.or.jp/cm/wp-content/uploads/2020/ 01/Dams-in-Japan-2018-web%E7%94%A8.pdf (page last accessed on 18th May 2021)

Kamphuis JW, Bowering RJ (1970) Impulse waves generated by land- slides. In: Proceedings of the 12th Coastal Engineering Conference, ASCE, Reston Va. 1 575–588

Katsumata K, Ichiyanagi M, Ohzono M, Aoyama H, Tanaka R, Takada M, Yamaguchi T, Okada K, Takahashi H, Sakai S, Matsumoto S, Okada T, Matsuzawa T, Hirano S, Terakawa T, Horikawa S, Kosuga M, Katao H, Iio Y, Nagaoka A, Tsumura N, Ueno T, the Group for the Aftershock Observations of the 2018 Hokkaido Eastern Iburi Earthquake (2019) The 2018 Hokkaido Eastern Iburi earthquake (M JMA= 6.7) was triggered by a strike-slip faulting in a stepover segment: insights from the aftershock distribution and the focal mechanism solution of the main shock. Earth Planets Space 71:53. https://doi.org/10.1186/ s40623-019-1032-8

Le TA, Takagi H, Heidarzadeh M, Takata Y, Takahashi A (2019) field sur- veys and numerical simulation of the 2018 Typhoon Jebi: impact of high waves and storm surge in semi-enclosed Osaka Bay. Japan Pure and Applied Geophysics 176(10):4139–4160. https://doi.org/10.1007/ s00024-019-02295-0

Li R, Wang F, Zhang S (2020) Controlling role of Ta-d pumice on the coseismic landslides triggered by 2018 Hokkaido Eastern Iburi Earth- quake. Landslides 17(5):1233–1250

Liu B, Siu YL, Mitchell G (2016) Hazard interaction analysis for multi- hazard risk assessment: a systematic classification based on hazard- forming environment. Nat Hazard 16(2):629–642

Lu P, Shi W, Wang Q, Li Z, Qin Y, Fan X (2021) Co-seismic landslide map- ping using Sentinel-2 10-m fused NIR narrow, red-edge, and SWIR bands. Landslides 1–21

Lyddon CE, Brown JM, Leonardi N, Saulter A, Plater AJ (2019) Quanti- fication of the uncertainty in coastal storm hazard predictions due to wave-current interaction and wind forcing. Geophys Res Lett 46(24):14576–14585

Miyagi T, Yamashina S, Esaka F, Abe S (2011) Massive landslide triggered by 2008 Iwate-Miyagi inland earthquake in the Aratozawa Dam area, Tohoku. Japan Landslides 8(1):99–108

Muhari A, Heidarzadeh M, Susmoro H, Nugroho HD, Kriswati E, Supartoyo Wijanarto AB, Imamura F, Arikawa T (2019) The December 2018 Anak Krakatau volcano tsunami as inferred from post-tsunami field surveys and spectral analysis. Pure Appl Geophys 176:5219–5233. https://doi. org/10.1007/s00024-019-02358-2

McCulloch DS (1966) Slide-induced waves, seiching, and ground fractur- ing caused by the earthquake of March 27, 1964, at Kenai Lake, Alaska. Geol Surv Prof Pap 543-A

McFall BC, Fritz HM (2016) Physical modelling of tsunamis gener- ated by three-dimensional deformable granular slides on planar and conical island slopes. Proceedings of Royal Society London A 472(2188):20160052

Mohammed F, Fritz HM (2012) Physical modeling of tsunamis generated by three-dimensional deformable granular landslides. J Geophys Res Oceans 117 (C11). https://doi.org/10.1029/2011JC007850

Noda E (1970) Water waves generated by landslides. J Waterw Harb Coast Eng Div 96(4):835–855

Omira R, Dogan GG, Hidayat R, Husrin S, Prasetya G, Annunziato A, Proietti C et al (2019) The September 28th, 2018, tsunami in Palu- Sulawesi, Indonesia: A post-event field survey. Pure Appl Geophys 176(4):1379–1395

Oppikofer T, Hermanns RL, Roberts NJ, Böhme M (2019) SPLASH: semi- empirical prediction of landslide-generated displacement wave run-up heights. Geological Society, London, Special Publications 477(1):353–366. https://doi.org/10.1144/SP477.1

Osanai N, Yamada T, Hayashi SI, Kastura SY, Furuichi T, Yanai S, Murakami Y, Miyazaki T, Tanioka Y, Takiguchi S, Miyazaki M (2019) Characteristics of landslides caused by the 2018 Hokkaido Eastern Iburi Earthquake. Landslides 16(8):1517–1528

Panizzo A, Girolamo PD, Risio MD, Maistri A, Petaccia A (2005) Great landslide events in Italian artificial reservoirs. Nat Hazard 5(5):733–740 Roberts NJ, McKillop RJ, Lawrence MS, Psutka JF, Clague JJ, Brideau MA, Ward BC (2013) Impacts of the 2007 landslide-generated tsunami in Chehalis Lake, Canada. In: Landslide science and practice (pp. 133– 140). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642- 31319-6_19

Robert NJ, McKillop R, Hermanns RL, Clague JJ, Oppikofer T (2014) Pre- liminary Global Catalogue of Displacement Waves from Subaerial Landslides. In: Proc. Third World Landslide Forum. K. Sassa et al. (eds.). Landslide Sci Safer Geoenviron 3. https://doi.org/10.1007/978-3-319- 04996-0_104

Sabeti R, Heidarzadeh M (2020) Semi-empirical predictive equations for the initial amplitude of submarine landslide-generated waves: appli- cations to 1994 Skagway and 1998 Papua New Guinea tsunamis. Nat Hazards 103:1591–1611. https://doi.org/10.1007/s11069-020-04050-4 Savage BM, Johnson MC (2001) Flow over ogee spillway: Physical and numerical model case study. J Hydraul Eng 127(8):640–649 Slingerland R, Voight B (1982) Evaluating hazard of landslide-induced water waves. Journal of the Waterway, Port, Coastal and Ocean Divi- sion 108(4):504–512

Schnitter G (1964) Die Katastrophe von Vaiont in Oberitalien. Wasser- Und Energiewirtschaft 56(2/3):61–69

Schuster RL, Wieczorek GF (2002) Landslide triggers and types. In: Pro- ceedings of the 1st European Conference on Landslides, Editors: J. Rybář, J. Stemberk, P. Wagner, Prague, Czech Republic 59–78, Balkema, Tokyo

Synolakis CE (1987) The runup of solitary waves. J Fluid Mech 185:523–545

Takagi H, Takahashi A (2021) Short-fetch high waves during the passage of 2019 Typhoon Faxai over Tokyo Bay. Front Earth Sci 15(2)

Takagi H, Pratama MB, Kurobe S, Esteban M, Aránguiz R, Ke B (2019) Analysis of generation and arrival time of landslide tsunami to Palu City due to the 2018 Sulawesi earthquake. Landslides 16(5):983–991 Tsuji Y, Satake K, Ishibe T, Kusumoto S, Harada T, Nishiyama A, Kim HY, Ueno T, Murotani S, Oki S, Sugimoto M, Tomari J, Heidarzadeh M, Watada S, Imai K, Choi BH, Yoon SB, Bae JS, Kim KO, Kim HW (2011) Field surveys of tsunami heights from the 2011 Off the Pacific Coast of Tohoku, Japan, earthquake. Bulletin of the Earthquake Research Insti- tute University of Tokyo 86:29–279 (in Japanese with English abstract) Vacondio R, Mignosa P, Pagani S (2013) 3D SPH numerical simulation of the wave generated by the Vajont rockslide. Adv Water Resour 59(9):146–156

Wang F, Fan X, Yunus AP, Subramanian SS, Alonso-Rodriguez A, Dai L, Xu Q, Huang R (2019) Coseismic landslides triggered by the 2018 Hok- kaido, Japan (M w 6.6), earthquake: spatial distribution, controlling factors, and possible failure mechanism. Landslides 16(8):1551–1566 Wessel P, Smith WHF (1998) New improved version of Generic Mapping Tools released. EOS Trans Am Geophys Union 79(47):579–579

Xue H, Ma Q, Diao M, Jiang L (2019) Propagation characteristics of subaerial landslide-generated impulse waves. Environ Fluid Mech 19(1):203–230

Yamagishi H, Yamazaki F (2018) Landslides by the 2018 Hokkaido Iburi- Tobu Earthquake on September 6. Landslides 15(12):2521–2524

Yin YP, Huang B, Chen X, Liu G, Wang S (2015) Numerical analysis on wave generated by the Qianjiangping landslide in Three Gorges Res- ervoir. China Landslides 12(2):355–364

Zhang S, Li R, Wang F, Iio A (2019) Characteristics of landslides triggered by the 2018 Hokkaido Eastern Iburi earthquake. Northern Japan Land- slides 16(9):1691–1708

Zhou JW, Xu FG, Yang XG, Yang YC, Lu PY (2016) Comprehensive analy- ses of the initiation and landslide-generated wave processes of the 24 June 2015 Hongyanzi landslide at the Three Gorges Reservoir. China Landslides 13(3):589–601

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る