リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Curved Trajectory Effect on Charge‐Exchange Collision at Ionospheric Temperatures」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Curved Trajectory Effect on Charge‐Exchange Collision at Ionospheric Temperatures

Ieda, A. 名古屋大学

2022.02

概要

Collision between ions and neutral particles is an essential characteristic of Earth's ionosphere. This ion-neutral collision is usually caused by the polarization of neutral particles. This collision can also be caused by charge exchange, if the particle pair is parental, such as atomic oxygen and its ion. The total collision frequency is not the sum of the polarization and charge-exchange components, but is essentially equal to the dominant component. The total is enhanced only around the classic transition temperature, which is near the ionospheric temperature range (typically 200–2000 K). However, the magnitude of this enhancement has differed among previous studies; the maximum enhancement has been reported as 41% and 11% without physical explanation. In the present study, the contribution of the polarization force to the charge-exchange collision is expressed as a simple curved particle trajectory effect. As a result, the maximum enhancement is found to be 22%. It is discussed that the enhancement has been neglected in classic ionospheric studies partly due to confusion with the glancing particle contribution, which adds 10.5% to the polarization component. The enhancement has been neglected presumably also because there has been no functional form to express it. Such an expression is derived in this study.

この論文で使われている画像

参考文献

Abramowitz, M., & Stegun, I. A. (1964). Handbook of mathematical functions with formulas, graphs, and mathematical tables. (Tenth Printing, December 1972, with corrections). U.S. Government Printing Ofllce.

Alpher, R. A., & White, D. R. (1959). Optical refractivity of high-temperature gases. 1. Effects resulting from dissociation of diatomic gases.

Physics of Fluids, 2(2), 153–161. https://doi.org/10.1063/1.1705906

Atkins, P., de Paula, J., & Keeler, J. (2018). Atkins' physical chemistry (11th ed.). Oxford University Press.

Banks, P. (1966). Collision frequencies and energy transfer – Ions. Planetary and Space Science, 14(11), 1105–1122. https://doi. org/10.1016/0032-0633(66)90025-0

Banks, P. M., & Kockarts, G. (1973). Aeronomy, Part A. Academic Press. Brekke, A. (2013). Physics of the upper polar atmosphere (2nd ed.). Springer.

Brekke, A., & Hall, C. (1988). Auroral ionospheric quiet summer time conductances. Annales Geophysicae-Atmospheres Hydrospheres and Space Sciences, 6(4), 361–375.

Bruno, D., Catalfamo, C., Capitelli, M., Colonna, G., De Pascale, O., Diomede, P., et al. (2010). Transport properties of high-temperature Jupiter atmosphere components. Physics of Plasmas, 17(11), 112315. https://doi.org/10.1063/1.3495980

Capitelli, M., Bruno, D., & Laricchiuta, A. (2013). Fundamental aspects of plasma chemical physics: Transport. Springer.

Dalgarno, A. (1958). The mobilities of ions in their parent gases. Philosophical Transactions of the Royal Society of London - Series A: Mathe- matical and Physical Sciences, 250(982), 426–439. https://doi.org/10.1098/rsta.1958.0003

Dalgarno, A., McDowell, M. R. C., & Williams, A. (1958). The mobilities of ions in unlike gases. Philosophical Transactions of the Royal Society of London - Series A: Mathematical and Physical Sciences, 250(982), 411–425. https://doi.org/10.1098/rsta.1958.0002

Heiche, G., & Mason, E. A. (1970). Ion mobilities with charge exchange. The Journal of Chemical Physics, 53(12), 4687–4696. https://doi. org/10.1063/1.1673997

Hickman, A. P., Medikeri-Naphade, M., Chapin, C. D., & Huestis, D. L. (1997). Fine structure effects in the O+–O collision frequency. Geophys- ical Research Letters, 24(2), 119–122. https://doi.org/10.1029/96gl03797

Holstein, T. (1952). Mobilities of positive ions in their parent gases. Journal of Physical Chemistry, 56(7), 832–836. https://doi.org/10.1021/ j150499a004

Ieda, A. (2020). Ion-neutral collision frequencies for calculating ionospheric conductivity. Journal of Geophysical Research-Space Physics, 125, e2019JA027128. https://doi.org/10.1029/2019JA027128

Ieda, A. (2021). Atomic oxygen ion-neutral collision frequency models at ionospheric temperatures. Journal of Geophysical Research-Space Physics, 126, e2020JA028441. https://doi.org/10.1029/2020JA028441

Ieda, A., Oyama, S., Vanhamäki, H., Fujii, R., Nakamizo, A., Amm, O., et al. (2014). Approximate forms of daytime ionospheric conductance.

Journal of Geophysical Research-Space Physics, 119(12), 10397–10415. https://doi.org/10.1002/2014ja020665

Kihara, T., Taylor, M. H., & Hirschfelder, J. O. (1960). Transport properties for gases assuming inverse power intermolecular potentials. Physics of Fluids, 3(5), 715–720. https://doi.org/10.1063/1.1706115

Knof, H., Mason, E. A., & Vanderslice, J. T. (1964). Interaction energies, charge exchange cross sections, and diffusion cross sections for N+–N and O+–O collisions. The Journal of Chemical Physics, 40(12), 3548–3553. https://doi.org/10.1063/1.1725050

Langevin, P. (1905). A Fundamental Formula of Kinetic Theory (Vol. 5, pp. 245–288). Annales De Chimie Et De Physique.

Laricchiuta, A., Bruno, D., Capitelli, M., Catalfamo, C., Celiberto, R., Colonna, G., et al. (2009). High temperature Mars atmosphere. Part I: Transport cross sections. European Physical Journal D, 54(3), 607–612. https://doi.org/10.1140/epjd/e2009-00192-7

Levin, E., & Wright, M. J. (2004). Collision integrals for ion-neutral interactions of nitrogen and oxygen. Journal of Thermophysics and Heat Transfer, 18(1), 143–147. https://doi.org/10.2514/1.2552

Mason, E. A., & Vanderslice, J. T. (1959). Mobility of hydrogen ions (H+,H +,H +) in hydrogen. Physical Review, 114(2), 497–502. https://doi. org/10.1103/PhysRev.114.497

McDaniel, E. W. (1989). Atomic collisions: Electron and photon projectiles. Wiley.

Murphy, A. B. (1995). Transport-coefficients of air, argon-air, nitrogen-air, and oxygen-air plasmas. Plasma Chemistry and Plasma Processing, 15(2), 279–307. https://doi.org/10.1007/bf01459700

Murphy, A. B. (2000). Transport coefficients of hydrogen and argon-hydrogen plasmas. Plasma Chemistry and Plasma Processing, 20(3), 279–297. https://doi.org/10.1023/a:1007099926249

Murphy, A. B. (2012). Transport coefficients of plasmas in mixtures of nitrogen and hydrogen. Chemical Physics, 398, 64–72. https://doi. org/10.1016/j.chemphys.2011.06.017

Pesnell, W. D., Omidvar, K., & Hoegy, W. R. (1993). Momentum-transfer collision frequency of O+–O. Geophysical Research Letters, 20(13), 1343–1346. https://doi.org/10.1029/93gl01597

Pesnell, W. D., Omidvar, K., Hoegy, W. R., & Wharton, L. E. (1994). O+–O collision frequency in high-speed flows. Journal of Geophysical Research, 99(A11), 21375–21382. https://doi.org/10.1029/94ja01650

Schunk, R. W., & Nagy, A. F. (2009). Ionospheres : Physics, plasma physics, and chemistry (2nd ed.). Cambridge University Press.

Schunk, R. W., & Walker, J. C. G. (1973). Theoretical ion densities in lower ionosphere. Planetary and Space Science, 21(11), 1875–1896. https:// doi.org/10.1016/0032-0633(73)90118-9

Stallcop, J. R., Partridge, H., & Levin, E. (1991). Resonance charge transfer, transport cross sections, and collision integrals for N+(3P)–N(4S0) and O+(4S0)–O(3P) interactions. The Journal of Chemical Physics, 95(9), 6429–6439. https://doi.org/10.1063/1.461563

Stebbings, R. F., Smith, A. C. H., & Ehrhardt, H. (1964). Charge transfer between oxygen atoms and O+ and H+ ions. Journal of Geophysical Research, 69(11), 2349–2355. https://doi.org/10.1029/JZ069i011p02349

Wang, C. L., Wu, Y., Chen, Z. X., Yang, F., Feng, Y., Rong, M. Z., & Zhang, H. T. (2016). Thermodynamic and transport properties of real air plasma in wide range of temperature and pressure. Plasma Science and Technology, 18(7), 732–739. https://doi.org/10.1088/1009-0630/18/7/06

Wolf, F. A., & Turner, B. R. (1968). Energy dependence of charge-transfer reactions in thermal and low-electron-volt region. The Journal of Chemical Physics, 48(9), 4226–4233. https://doi.org/10.1063/1.1669761

Wright, M. J., Hwang, H. H., & Schwenke, D. W. (2007). Recommended collision integrals for transport property computations Part 2: Mars and Venus entries. AIAA Journal, 45(1), 281–288. https://doi.org/10.2514/1.24523

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る