リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Ion‐Neutral Collision Frequencies for Calculating Ionospheric Conductivity」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Ion‐Neutral Collision Frequencies for Calculating Ionospheric Conductivity

Ieda, A. 名古屋大学

2020.02

概要

Molecular oxygen collides with its first positive ion in the Earth's ionosphere. The collision frequency of this particle pair is used to calculate the electric conductivity of the ionosphere. However, for this parental pair there are two collision types, resonant and nonresonant, and the selection of the collision type has differed among previous studies in calculation of conductivity. In the present study, we clarify that the nonresonant collision is physically essential for this pair because the relevant temperatures are low. That is, the peak of the ionospheric conductivity occurs at altitudes between 100 and 130 km, where the temperatures of ions and neutral particles are usually lower than 600 K, and for these temperatures nonresonant collisions are dominant. The collision frequency would be underestimated by 30% if the resonant collision was assumed at an altitude of 110 km (where the temperature is 240 K). The impact of this difference on the conductivity is estimated to be small (3%), primarily because molecular nitrogen is much more abundant than molecular oxygen. Although we have confirmed that the nonresonant collision is essential, we also include the resonant type, primarily in case of possible elevated temperature events. A set of ion‐neutral collision frequency coefficients for calculating the conductivity is summarized, including other particle pairs, in the Appendices. Small corrections to the traditional coefficients are made.

この論文で使われている画像

参考文献

Alpher, R. A., & White, D. R. (1959). Optical refractivity of high‐temperature gases. 1. Effects resulting from dissociation of diatomic gases.

Physics of Fluids, 2(2), 153–161. https://doi.org/10.1063/1.1705906

Amme, R. C., & Utterback, N. G. (1964). Effects of ion beam excitation of charge transfer cross section measurements. In M. R. C. McDowell

(Ed.), Atomic Collision Processes (pp. 847–853). Amsterdam: North‐Holland publishing.

Banks, P. (1966). Collision frequencies and energy transfer—Ions. Planetary and Space Science, 14(11), 1105–1122. https://doi.org/10.1016/

0032‐0633(66)90025‐0

Banks, P. M., & Kockarts, G. (1973). Aeronomy, Part A. New York: Academic Press.

Bilitza, D., Altadill, D., Truhlik, V., Shubin, V., Galkin, I., Reinisch, B., & Huang, X. (2017). International Reference Ionosphere 2016: From

ionospheric climate to real‐time weather predictions. Space Weather‐the International Journal of Research and Applications, 15, 418–429.

https://doi.org/10.1002/2016sw001593

Brekke, A. (2013). Physics of the upper polar atmosphere (2nd ed.). Heidelberg: Springer.

Brekke, A., & Hall, C. (1988). Auroral ionospheric quiet summer time conductances. Annales Geophysicae‐Atmospheres Hydrospheres and

Space Sciences, 6(4), 361–375.

Brekke, A., & Moen, J. (1993). Observations of high‐latitude ionospheric conductances. Journal of Atmospheric and Terrestrial Physics,

55(11‐12), 1493–1512. https://doi.org/10.1016/0021‐9169(93)90126‐j

COESA (1976). U.S. standard atmosphere, 1976. Washington, DC: U.S. Government Printing Office.

Dalgarno, A. (1958). The mobilities of ions in their parent gases. Philosophical Transactions of the Royal Society of London. Series A,

Mathematical and Physical Sciences, 250(982), 426–439. https://doi.org/10.1098/rsta.1958.0003

Dalgarno, A. (1961). Intermolecular potentials for ionic systems. Planetary and Space Science, 3, 217–220. https://doi.org/10.1016/0032‐

0633(61)90248‐3

Dalgarno, A., McDowell, M. R. C., & Williams, A. (1958). The mobilities of ions in unlike gases. Philosophical Transactions of the Royal

Society of London. Series A, Mathematical and Physical Sciences, 250(982), 411–425. https://doi.org/10.1098/rsta.1958.0002

Dalgarno, A., & Parkinson, D. (1959). The polarizabilities of atoms from boron to neon. Proceedings of the Royal Society of London. Series

A, Mathematical and Physical Sciences, 250(1262), 422–426. https://doi.org/10.1098/rspa.1959.0073

Hasted, J. B. (1964). Physics of atomic collisions. London: Butterworths.

Hirschfelder, J. O., Curtiss, C. F., & Bird, R. B. (1964). Molecular theory of gases and liquids (Second printing, Corrected with notes added,

March, 1964 ed.). New York: Wiley.

Ieda, A., Oyama, S., Vanhamäki, H., Fujii, R., Nakamizo, A., Amm, O., et al. (2014). Approximate forms of daytime ionospheric conductance. Journal of Geophysical Research: Space Physics, 119, 10,397–10,415. https://doi.org/10.1002/2014ja020665

Knof, H., Vanderslice, J. T., & Mason, E. A. (1964). Interaction energies, charge exchange cross sections, and diffusion cross sections for

N+–N and O+–O collisions. Journal of Chemical Physics, 40(12), 3548–3553. https://doi.org/10.1063/1.1725050

McGranaghan, R., Knipp, D. J., Solomon, S. C., & Fang, X. H. (2015). A fast, parameterized model of upper atmospheric ionization

rates, chemistry, and conductivity. Journal of Geophysical Research: Space Physics, 120, 4936–4949. https://doi.org/10.1002/

2015ja021146

Moro, J., Denardini, C. M., Resende, L. C. A., Chen, S. S., & Schuch, N. J. (2016). Influence of uncertainties of the empirical models for

inferring the E‐region electric fields at the dip equator. Earth, Planets and Space, 68(1), 1–15. https://doi.org/10.1186/s40623‐016‐

0479‐0

Picone, J. M., Hedin, A. E., Drob, D. P., & Aikin, A. C. (2002). NRLMSISE‐00 empirical model of the atmosphere: Statistical comparisons

and scientific issues. Journal of Geophysical Research, 107(A12). https://doi.org/10.1029/2002ja009430

Schunk, R. W. (1977). Mathematical structure of transport‐equations for multispecies flows. Reviews of Geophysics, 15(4), 429–445. https://

doi.org/10.1029/RG015i004p00429

Schunk, R. W., & Nagy, A. F. (2009). Ionospheres: Physics, plasma physics, and chemistry. New York: Cambridge University Press.

Schunk, R. W., & Walker, J. C. G. (1973). Theoretical ion densities in lower ionosphere. Planetary and Space Science, 21(11), 1875–1896.

https://doi.org/10.1016/0032‐0633(73)90118‐9

Thebault, E., Finlay, C. C., Beggan, C. D., Alken, P., Aubert, J., Barrois, O., et al. (2015). International Geomagnetic Reference Field: The

12th generation. Earth, Planets and Space, 67(1), 79. https://doi.org/10.1186/s40623‐015‐0228‐9

World Data Center for Geomagnetism, Kyoto, Nosé, M., Iyemori, T., Sugiura, M., & Kamei, T. (2015). Geomagnetic Dst index. https://doi.

org/10.17593/14515‐74000

12 of 12

...

参考文献をもっと見る