リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「The 2018 phreatic eruption at Mt. Motoshirane of Kusatsu–Shirane volcano, Japan: Eruption and intrusion of hydrothermal fluid observed by a borehole tiltmeter network」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

The 2018 phreatic eruption at Mt. Motoshirane of Kusatsu–Shirane volcano, Japan: Eruption and intrusion of hydrothermal fluid observed by a borehole tiltmeter network

寺田 暁彦 神田 径 小川 康雄 Akihiko Terada Wataru Kanda Yasuo Ogawa 東京工業大学 DOI:https://doi.org/10.1186/s40623-021-01475-4

2021.07

概要

We estimate the mass and energy budgets for the 2018 phreatic eruption of Mt. Motoshirane on Kusatsu–Shirane volcano, Japan, based on data obtained from a network of eight tiltmeters and weather radar echoes. The tilt records can be explained by a subvertical crack model. Small craters that were formed by previous eruptions are aligned WNW–ESE, which is consistent with the strike of the crack modeled in this study. The direction of maximum compressive stress in this region is horizontal and oriented WNW–ESE, allowing fuid to intrude from depth through a crack with this orientation. Based on the crack model, hypocenter distribution, and MT resistivity structure, we infer that fuid from a hydrothermal reservoir at a depth of 2 km below Kusatsu–Shirane volcano has repeatedly ascended through a pre-existing subvertical crack. The infation and defation volumes during the 2018 eruption are estimated to have been 5.1 × 105 and 3.6 × 105 m3 , respectively, meaning that 1.5 × 105 m3 of expanded volume formed underground. The total heat associated with the expanded volume is estimated to have been≥ 1014 J, similar to or exceeding the annual heat released from Yugama Crater Lake of Mt. Shirane and that from the largest eruption during the past 130 year. Although the ejecta mass of the 2018 phreatic eruption was small, the eruption at Mt. Motoshirane was not negligible in terms of the energy budget of Kusatsu–Shirane volcano. A water mass of 0.1–2.0 × 107 kg was discharged as a volcanic cloud, based on weather radar echoes, which is smaller than the mass associated with the defation. We suggest that underground water acted as a bufer against the sudden intrusion of hydrothermal fuids, absorbing some of the fuid that ascended through the crack.

この論文で使われている画像

参考文献

Aloisi M, Bonaccorso A, Cannavò F, Currenti G, Gambino S (2020) The 24 December 2018 eruptive intrusion at Etna volcano as revealed by multidisciplinary continuous deformation networks (CGPS, borehole strainmeters and tiltmeters). J Geophys Res Solid Earth. https://doi.org/ 10.1029/2019JB019117

Aoyama H, Tanaka R, Hashimoto T, Murakami M, Narita S (2020) Seismic and geodetic monitoring near the active crater at Tokachidake volcano (preliminary report). Geophys Bull Hokkaido Univ 83:25–48. https://doi. org/10.14943/gbhu.83.25

Barberi F, Bertagnini A, Landi P, Principe C (1992) A review on phreatic eruptions and their precursors. J Volcanol Geotherm Res 52:231–246. https:// doi.org/10.1016/0377-0273(92)90046-G

Briggs GA (1969) Plume Rise. Critical Review Series, Rep. TID-25075, Atomic Energy Commission, Washington, DC, USA

Castaldo R, D’Auria L, Pepe S, Solaro G, Novellis VD, Tizzani P (2019) The impact of crustal rheology on natural seismicity: Campi Flegrei caldera case study. Geosci Front 10:453–466. https://doi.org/10.1016/j.gsf.2018.02.003

Christenson BW, Reyes AG, Young R, Moebis A, Sherburn S, Cole-Baker J, Britten K (2010) Cyclic processes and factors leading to phreatic eruption events: Insights from the 25 September 2007 eruption through Ruapehu Crater Lake, New Zealand. J Volcanol Geotherm Res 191:15–32. https:// doi.org/10.1016/j.jvolgeores.2010.01.008

de Moor JM, Stix J, Avard G, Muller C, Corrales E, Diaz JA, Alan A, Brenes J, Pacheco J, Aiuppa A, Fischer TP (2019) Insights on hydrothermal-magmatic interactions and eruptive processes at Poás volcano (Costa Rica) from high-frequency gas monitoring and drone measurements. Geophys Res Lett 46:1293–1302. https://doi.org/10.1029/2018GL080301

Doi N, Kato O, Ikeuchi K, Komatsu R, Miyazaki S, Akaku K, Uchida T (1998) Genesis of the plutonic-hydrothermal system around quaternary granite in the Kakkonda geothermal system, Japan. Geothermics 27:663–690. https://doi.org/10.1016/S0375-6505(98)00039-X

Fournier RO (1991) The transition from hydrostatic to greater than hydrostatic fuid pressure in presently active continental hydrothermal systems in crystalline rock. Geophys Res Lett 18:955–958. https://doi.org/10.1029/ 91GL00966

Fournier RO (1999) Hydrothermal Processes related to movement of fuid from plastic into brittle rock in the magmatic–epithermal environment. Econ Geol 94:1193–1211. https://doi.org/10.2113/gsecongeo.94.8.1193

Geirsson H, Rodgers M, LaFemina P, Witter M, Roman D, Muñoz A, Tenorio V, Alvarez J, Jacobo VC, Nilsson D, Galle B, Feineman MD, Furman T, Morales A (2014) Multidisciplinary observations of the 2011 explosive eruption of Telica volcano, Nicaragua: Implications for the dynamics of low-explosivity ash eruptions. J Volcanol Geotherm Res 271:55–69. https://doi.org/10. 1016/j.jvolgeores.2013.11.009

Himematsu Y, Ozawa T, Aoki Y (2020) Coeruptive crustal deformation associated with the 2018 Kusatsu-Shirane phreatic eruption based on PALSAR-2 time-series analysis. Earth Planets Space 72:116. https://doi.org/10.1186/ s40623-020-01247-6

Ingebritsen SE, Manning CE (2010) Permeability of the continental crust: dynamic variations inferred from seismicity and metamorphism. Geofuids 10:193–205. https://doi.org/10.1111/j.1468-8123.2010.00278.x

Ishizaki Y, Nigorikawa A, Kametani N, Yoshimoto M, Terada A (2020) Geology and eruption history of the Motoshirane Pyroclastic Cone Group, KusatsuShirane Volcano, central Japan. J Geol Soc Japan 126:473–491. https://doi. org/10.5575/geosoc.2020.0022

Juncu D, Árnadóttir Th, Geirsson H, Gunnarsson G (2019) The efect of fuid compressibility and elastic rock properties on deformation of geothermal reservoirs. Geophys Int J 217:122–134. https://doi.org/10.1093/gji/ggz011

Kagiyama T (1981) Evaluation methods of heat discharge and their applications to the major active volcanoes in Japan. J Volcanol Geotherm Res 9:87–97. https://doi.org/10.1016/0377-0273(81)90016-0

Kametani N, Ishizaki Y, Yoshimoto M, Maeno F, Terada A, Furukawa R, Honda R, Ishizuka Y, Komori J, Nagai M, Takarada S (2021) Total mass estimate of the January 23, 2018 phreatic eruption of the Kusatsu–Shirane Volcano, central Japan. Earth Planets Space 73:141. https://doi.org/10.1186/ s40623-021-01468-3

Kato A, Terakawa T, Yamanaka Y, Maeda Y, Horikawa S, Matsuhiro K, Okuda T (2015) Preparatory and precursory processes leading up to the 2014 phreatic eruption of Mount Ontake Japan. Earth Planets Space 67:111. https://doi.org/10.1186/s40623-015-0288-x

Kobayashi T, Morishita Y, Munekane H (2018) First detection of precursory ground infation of a small phreatic eruption by InSAR. Earth Planet Sci Lett 491:244–254. https://doi.org/10.1016/j.epsl.2018.03.041

Maeda Y, Kato A, Yamanaka Y (2017) Modeling the dynamics of a phreatic eruption based on a tilt observation: Barrier breakage leading to the 2014 eruption of Mount Ontake, Japan. J Geophys Res Solid Earth 122:1007– 1024. https://doi.org/10.1002/2016JB013739

Maeno F, Nakada S, Oikawa T, Yoshimoto M, Komori J, Ishizuka Y, Takeshita Y, Shimano T, Kaneko T, Nagai M (2016) Reconstruction of a phreatic eruption on 27 September 2014 at Ontake Central Japan, based on proximal pyroclastic density current and fallout deposits. Earth Planets Space 68:82. https://doi.org/10.1186/s40623-016-0449-6

Marzano FS, Mereu L, Scollo S, Donnadieu F, Bonadonna C (2020) Tephra mass eruption rate from ground-based X-Band and L-Band microwave radars during the November 23, 2013, Etna paroxysm. IEEE Trans Geosci Remote Sens 58:3314–3327. https://doi.org/10.1109/TGRS.2019.2953167

Matsunaga Y, Kanda W, Takakura S, Koyama T, Saito Z, Seki K, Suzuki A, Kishita T, Kinoshita Y, Ogawa Y (2020) Magmatic hydrothermal system inferred from the resistivity structure of Kusatsu-Shirane Volcano. J Volcanol Geotherm Res 390:106742. https://doi.org/10.1016/j.jvolgeores.2019.106742

Meteorological Research Institute (2018) Eruption cloud echoes from Mt. Kusatsu-Shirane on January 23rd, 2018, observed by JMA weather radars. Reports of Coordinating Committee for Prediction of Volcanic Eruption 129: 78–82.

Minakami T (1939) Explosive activities of volcano Kusatsu–Sirane during 1937 and 1938. Bull Earthq Res Inst 17:590–623

Mori T, Hirabayashi J, Nogami K, Onizawa S (2006) A new seismic observation system at the Kusatsu-Shirane volcano. Bull Volcanol Soc Japan 53:41–47. https://doi.org/10.18940/kazan.51.1_41

Munekane H (2021) Modeling long-term volcanic deformation at the Kusatsu– Shirane and Asama volcanoes, Japan using the GNSS coordinate time series. 21 April 2021, PREPRINT (Version 1) available at Research Square. https://doi.org/10.21203/rs.3.rs-433272/v1

Nakamichi H, Kumagai H, Nakano M, Okubo M, Kimata F, Ito Y, Obara K (2009) Source mechanism of a very-long-period event at Mt Ontake, central Japan: response of a hydrothermal system to magma intrusion beneath the summit. J Volcanol Geotherm Res 187:167–177. https://doi.org/10. 1016/j.jvolgeores.2009.09.006

Narita S, Murakami M, Tanaka R (2019) Quantitative relationship between plume emission and multiple defations after the 2014 phreatic eruption at Ontake volcano Japan. Earth Planets Space 71:145. https://doi.org/10. 1186/s40623-019-1124-5

Narita S, Ozawa T, Aoki Y, Shimada M, Furuya M, Takada Y, Murakami M (2020) Precursory ground deformation of the 2018 phreatic eruption on IwoYama volcano, revealed by four-dimensional joint analysis of airborne and spaceborne InSAR. Earth Planets Space 72:145. https://doi.org/10. 1186/s40623-020-01280-5

Nurhasan OY, Ujihara N, Tank SB, Honkura Y, Onizawa S, Mori T, Makino M (2006) Two electrical conductors beneath Kusatsu-Shirane volcano, Japan, imaging by audiomagnetotellurics and their implications for hydrothermal system. Earth Planet Space 58:1053–1059. https://doi.org/ 10.1186/BF03352610

Ogawa Y, Aoyama H, Yamamoto M, Tsutsui T, Terada A, Ohkura T, Kanda W, Koyama T, Kaneko T, Ominato T, Ishizaki Y, Yoshimoto M, Ishimine Y, Nogami K, Mori T, Kikawada Y, Kataoka K, Matsumoto T, Kamiisi I, Yamaguchi S, Ito Y, Tsunematsu K (2018) Comprehensive survey of 2018 Kusatsu-Shirane Eruption. Proc Symp Nat Disaster Sci 55:25–30

Ohba T, Hirabayashi J, Nogami K (1994) Water, heat and chloride budgets of the crater lake Yugama at Kusatsu-Shirane volcano, Japan. Geochem J 28:217–231. https://doi.org/10.2343/geochemj.28.217

Ohba T, Hirabayashi J, Nogami K (2008) Temporal changes in the chemistry of lake water within Yugama Crater, Kusatsu-Shirane volcano, Japan: implications for the evolution of the magmatic hydrothermal system. J Volcanol Geotherm Res 178:131–144. https://doi.org/10.1016/j.jvolg eores.2008.06.015

Ohba T, Yaguchi M, Nishino K, Numanami N, Daita Y, Sukigara C, Ito M, Tsunogai U (2019a) Time variations in the chemical and isotopic composition of fumarolic gases at Hakone volcano, Honshu Island, Japan, over the earthquake swarm and eruption in 2015, interpreted by magma sealing model. Earth Planets Space 71:48. https://doi.org/10.1186/ s40623-019-1027-5

Ohba T, Yaguchi M, Nishino K, Numanami N, Tsunogai U, Ito M, Shingubara R (2019b) Time variation in the chemical and isotopic composition of fumarolic gasses at Kusatsu-Shirane Volcano Japan. Front Earth Sci 7:249. https://doi.org/10.3389/feart.2019.00249

Okada Y (1992) Internal deformation due to shear and tensile faults in a halfspace. Bull Seism Soc Am 82:1018–1040

Ozawa S, Nishimura T, Suito H, Kobayashi T, Tobita M, Imakiire T (2011) Coseismic and postseismic slip of the 2011 magnitude-9 Tohoku-Oki earthquake. Nature 475:373–376. https://doi.org/10.1038/nature10227

Rivalta E, Segall P (2008) Magma compressibility and the missing source for some dike intrusions. Geophys Res Lett 35:L04306. https://doi.org/10. 1029/2007GL032521

Roman DC, LaFemina PC, Bussard R, Stephens K, Wauthier C, Higgins M, Feineman M, Arellano S, de Moor JM, Avard G, Cruz MM, Burton M, Varnam M, Saballos A, Ibarra M, Strauch W, Tenorio V (2019) Mechanisms of unrest and eruption at persistently restless volcanoes: Insights from the 2015 eruption of Telica Volcano, Nicaragua. Geochem Geophys Geosys 20:4162–4183. https://doi.org/10.1029/2019GC008450

Saishu H, Okamoto A, Tsuchiya N (2014) The signifcance of silica precipitation on the formation of the permeable–impermeable boundary within Earth’s crust. Terra Nova 26:253–259. https://doi.org/10.1111/ter.12093

Sato H, Takahashi H, Yamamoto E, Fukuo N, Uehara M, Terasawa Y (1980) Development of the crustal tilt observation method using borehole-type tiltmeters. Jisin 33:343–368. https://doi.org/10.4294/zisin1948.33.3_343

Sato E, Fukui K, Shimbori T (2018) Aso volcano eruption on October 8, 2016, observed by weather radars. Earth Planets Space 70:105. https://doi.org/ 10.1186/s40623-018-0879-4

Stix J (2018) Understanding fast and slow unrest at volcanoes and implications for eruption forecasting. Front Earth Sci 6:56. https://doi.org/10.3389/ feart.2018.00056

Stix J, de Moor JM (2018) Understanding and forecasting phreatic eruptions driven by magmatic degassing. Earth Planets Space 70:83. https://doi. org/10.1186/s40623-018-0855-z

Syarifuddin M, Oishi S, Hapsari RI, Shiokawa J, Mawandha HG, Iguchi M (2019) Estimating the volcanic ash fall rate from the Mount Sinabung eruption on February 19, 2018 using weather radar. J Disaster Res 14:135–150. https://doi.org/10.20965/jdr.2019.p0135

Tanada T, Ueda H, Nagai M, Ukawa M (2017) NIED’s V-net, the fundamental volcano observation network in Japan. J Disaster Res 12:926–931. https:// doi.org/10.20965/jdr.2017.p0926

Terada A (2018) Kusatsu-Shirane volcano as a site of phreatic eruptions. Jour Geol Soc Japan 124:251–270. https://doi.org/10.5575/geosoc.2017.0060

Terada A, Hashimoto T (2017) Variety and sustainability of volcanic lakes: response to subaqueous thermal activity predicted by a numerical model. J Geophys Res Solid Earth 122:6108–6130. https://doi.org/10. 1002/2017JB014387

Terada A, Sudo Y (2012) Thermal activity within the western-slope geothermal zone of Aso volcano, Japan: Development of a new thermal area. Geothermics 42:56–64. https://doi.org/10.1016/j.geothermics.2012.01.003

Tseng KH, Ogawa Y, Nurhasan TSB, Ujihara N, Honkura Y, Terada A, Usui Y, Kanda W (2020) Anatomy of active volcanic edifce at the KusatsuShirane volcano, Japan, by magnetotellurics: hydrothermal implications for volcanic unrests. Earth Planet Space 72:161. https://doi.org/10.1186/ s40623-020-01283-2

Ueda H, Kozono T, Fujita E, Kohno Y, Nagai M, Miyagi Y, Tanada T (2013) Crustal deformation associated with the 2011 Shinmoe-dake eruption as observed by tiltmeters and GPS. Earth Planet Space 65:4. https://doi.org/ 10.5047/eps.2013.03.001

Wagner W, Pruss A (2002) The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientifc use. J Phys Chem Ref Data 31:387–535. https://doi.org/10.1063/1.1461829

Wessel P, Smith WHF (1998) New, improved version of generic mapping tools released. EOS Trans AGU 79:579. https://doi.org/10.1029/98EO00426

Yaguchi M, Ohba T, Numanami N, Kawaguchi R (2019) Constituent mineral and water-soluble components of volcanic ash from the 2018 eruption of Mt. Motoshirane of Kusatsu-Shirane Volcano Japan. J Disaster Res 14:991–995. https://doi.org/10.20965/jdr.2019.p0991

Yamada T, Kurokawa AK, Terada A, Kanda W, Ueda H, Aoyama H, Ohkura T, Ogawa Y, Tanada T (2021) Locating hydrothermal fuid injection of the 2018 phreatic eruption at Kusatsu-Shirane volcano with volcanic tremor amplitude. Earth Planet Space 73:14. https://doi.org/10.1186/ s40623-020-01349-1

Yamamoto M, Aoyama H, Tsutsui T, Terada A, Kanada W, Ogawa Y (2018) Temporary seismic observation at Kusatsu-Shirane volcano, Japan. Abstracts of Japan Geoscience Union Meeting 2018 SVC41-P10.

Yamaoka K, Geshi N, Hashimoto T, Ingebritsen SE, Oikwa T (2016) Special issue “the phreatic eruption of Mt Ontake volcano in 2014.” Earth Planets Space 68:175. https://doi.org/10.1186/s40623-016-0548-4

Yoshida K, Hasegawa A, Okada T, Iinuma T, Ito Y, Asano Y (2012) Stress before and after the 2011 great Tohoku-oki earthquake and induced earthquakes in inland areas of eastern Japan. Geophys Res Lett 39:L03302. https://doi.org/10.1029/2011GL049729

Zobin VM, Bretón M, Ramírez JJ, Santiago H (2020) Transition from passive to pre-extrusion degassing of ascending andesitic magma before the lava dome-building eruption as derived from the seismic signals and tilt changes: Volcán de Colima, México, August–September 2004. J Volcanol Geotherm Res 401:106971. https://doi.org/10.1016/j.jvolgeores.2020. 106971

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る