リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Advanced Analysis Methods for Control of Dry Mechanical Powder Processings Using Mechanical Energy」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Advanced Analysis Methods for Control of Dry Mechanical Powder Processings Using Mechanical Energy

廣沢 文絵 大阪府立大学 DOI:info:doi/10.24729/00017357

2021.04.21

概要

What do you imagine when you hear the word “powder”? You may call sugar, salt, detergent, foundation, and even dirt and sand to mind. Powder has been widely used in products in our everyday life, e.g., cosmetics, medicines, and foods, etc. Additionally, powder has been used in many manufacturing processes of industrial products as well as raw materials and intermediates [1–5]. For example, titanium oxide fine particles, which are used in paints [6], inks [6], cosmetics [7], and photocatalysts [8, 9], have been obtained by grinding ilmenite ores to powder, followed by distillation, hydrolyzation and calcination before being ground again in the final process [10–12]. Calcium carbonate powders, which are used for e.g. coated papers, have been made of finely ground limestone [13, 14].

In addition, powder materials can be fabricated from various sources such as gas, liquid and solid forms. In fabrication processes from gases, physical vapor deposition [15] and chemical vapor deposition [16–18], in which particles are produced by cooling high- temperature steam including components of particles and by chemical reactions, respectively, can be used to fabricate functional materials. To make fine particles from liquids, liquid phase reactions, evaporation and crystallization can be employed [19–21]. Moreover, fine particles can be made from solid substances via mechanical processes [22, 23] such as grinding, mechanochemical reaction and mechanical alloying, which are induced by mechanical energy. Particularly, grinding (including comminution and pulverization) is one of the simple fabrication methods that has been used since the Stone Age [24]. Since ancient times, human beings have been increasing the value of resources by grinding them, which have hardly been used in their natural state. For example, shellfishes and hard nuts have been crushed for foods, and rocks have been ground to make pigments and raw materials for earthenware. In modern times, grinding can be used to improve extraction rates of useful components [25], to increase the surface area of materials for increasing their reactivity, and to adjust the size of particles for making them easier to handle [26]. More recently, not only grinding but also mechanochemical reactions have been employed in various fields such as fine chemical [27–30] and pharmaceutical [31, 32]. This is because of the developments of milling machines that can impart quite high mechanical energies to particles. In mechanochemical reactions, functional particles can be synthesized at low temperatures and in solvent-free environments [33, 34] because the significantly large mechanical energy can activate the reactants. For example, the mechanochemical reaction can synthesize a zinc ferrite at room temperature [35] from the solid-state reactants (i.e., mixtures of iron oxide and zinc oxide); in contrast, the conventional solid phase reaction requires calcination over 600°C [36]. Additionally, an olefin can be mechanochemically synthesized in solvent-free environments, although it is generally synthesized with the Knoevenagel condensation in a piperidine as an organic solvent [37]. Accordingly, mechanical processes are environment-friendly and cost-effective processes for producing functional particles with attractive properties. To fabricate these particles at low environmental impact, low cost and low energy consumption via mechanical processes, precise analyses of the processes are required.

この論文で使われている画像

参考文献

[1] S. Adjei, S. Elkatatny, J. Pet. Sci. Eng. 195 (2020) 107911.

[2] P. Ponnusamy, R.A.R. Rashid, S.H. Masood, D. Ruan, S. Palanisamy, Materials 13 (2020) 4301.

[3] V. Chak, H. Chattopadhyay, T.L. Dora, J. Manuf. Process. 56 (2020) 1059–1074.

[4] A.Y. Joshi, A.Y. Joshi, Heliyon 5 (2019) e02963.

[5] M. Menéndez, J. Herguido, A. Bérard, G.S. Patience, Can. J. Chem. Eng. 5 (2019) 2383–2394.

[6] Y. Liang, H. Ding, J. Alloy. Compd. 844 (2020) 156139.

[7] J. Musial, R. Krakowiak, D.T. Mlynarczyk, T. Goslinski, B.J. Stanisz, Nanomaterials 10 (2020) 1110.

[8] M. Ismael, Sol. Energy 211 (2020) 522–546.

[9] D. Chen, Y. Cheng, N. Zhou, P. Chen, Y. Wang, K. Li, S. Huo, P. Cheng, P. Peng, R. Zhang, L. Wang, H. Liu, Y. Liu, R. Ruan, J. Clean. Prod. 268 (2020) 121725.

[10] Y. Xu, B. Tang, X. Song, J. Yu, Royal Soc. Open Sci. 6 (2019) 172339.

[11] A.V. Dubenko, M.V. Nikolenko, A. Kostyniuk, B. Likozar, Materials 13 (2020) 538.

[12] N.T. Duong, L.D. Vuong, S.N. Manh, H.V. Tuyen, T.V. Chuong, Nanomater. Energ. 6 (2017) 1–7.

[13] M. Sharma, R. Aguado, D. Murtinho, A.J.M. Valente, A.P.M. Sousa, P.J.T. Ferreira, Int. J. Biol. Macromol. 162 (2020) 578–598.

[14] N.M. Julkapli, S. Bagheri, J. Wood Sci. 62 (2016) 117–130.

[15] C. Muratore, A.A. Voevodin, N.R. Glavin, Thin Solid Films 688 (2019) 137500.

[16] M. Saeed, Y. Alshammari, S.A. Majeed, E. Al-Nasrallah, Molecules 25 (2020) 3856.

[17] K. Ashurbekova, K. Ashurbekova, G. Botta, O. Yurkevich, M. Knez, Nanotechnology 31 (2020) 342001.

[18] A. Khlyustova, Y. Cheng, R. Yang, J. Mater. Chem. B 8 (2020) 6588–6609.

[19] H. Dong, G.M. Koenig, Jr., Cryst. Eng. Comm. 22 (2020) 1514–1530.

[20] M. Ismael, Sol. Energy Mater. Sol. Cells 219 (2021) 110786.

[21] K.G.N. Quiton, M. Lu, Y. Huang, Chemosphere 262 (2021) 128371.

[22] C. Suryanarayana, Prog. Mater. Sci. 46 (2001) 1–184.

[23] P. Baláž, M. Achimovičová, M. Baláž, P. Billik, Z. Cherkezova-Zheleva, J.M. Criado, F. Delogu, E. Dutková, E. Gaffet, F.J. Gotor, R. Kumar, I. Mitov, T. Rojac, M. Senna, A. Streletskii, K. Wieczorek-Ciurowa, Chem. Soc. Rev. 42 (2013) 7571– 7637.

[24] A.J. Lynch, C.A. Rowland, The History of Grinding, Society of Mining, Metallurgy and Exploration, Colorado, 2005.

[25] L. Taylor, D. Skuse, S. Blackburn, R. Greenwood, Powder Technol. 369 (2020) 1– 16.

[26] B.A.E. Ben-Arfa, I.M.M. Salvado, J.R. Frade, R.C. Pullar, Ceram. Int. 45 (2019) 3857–3863.

[27] E.L. Dreizin, M. Schoenitz, J. Mater. Sci. 52 (2017) 11789–11809.

[28] A.F. Fuentes, L. Takacs, J. Mater. Sci. 48 (2013) 598–611.

[29] L. Ouyang, Z. Cao, H. Wang, R. Hu, M. Zhu, J. Alloy. Compd. 691 (2017) 422–435.

[30] M. Wilkening, A. Düvel, F. Preishuber-Pflügl, K. Silva, S. Breuer, V. Šepelák, P. Heitjans, Z. Kristallogr. Cryst. Mater. 232 (2017) 107–127.

[31] A.A. Gečiauskaitė, F. García, Beilstein J. Org. Chem. 13 (2017) 2068–2077.

[32] M. Leonardi, M. Villacampa, J.C. Menéndez, Chem. Sci. 9 (2018) 2042–2064.

[33] C. Mottillo, T. Friščić, Molecules 22 (2017) 144.

[34] G. Cravotto, M. Caporaso, L. Jicsinszky, K. Martina, Beilstein J. Org. Chem. 12 (2016) 278–294.

[35] Z. Zhao, K. Ouyang, M. Wang, Trans. Nonferrous Met. Soc. China 20 (2010) 1131– 1135.

[36] I. Halikia, E. Milona, Can. Metall. Q. 33 (1994) 99–109.

[37] R. Trotzki, M.M. Hoffmann, B. Ondruschka, Green Chem. 10 (2008) 873–878.

[38] A. Bitterlich, C. Laabs, E. Busmann, A. Grandeury, M. Juhnke, H. Bunjes, A. Kwade, Chem. Eng. Technol. 37 (2014) 840–846.

[39] T.T.T. Hien, T. Shirai, M. Fuji, J. Jpn. Soc. Powder Powder Metallurgy 62 (2015) 519–523.

[40] B. Vijay, A. Rehan, M. Jiri, J. Text. Eng. 59 (2013) 87–92.

[41] M. Mahmoodan, H. Aliakbarzadeh, R. Gholamipour, Int. J. Refract. Metal. Hard Mater. 27 (2009) 801–805.

[42] P. Kuziora, M. Wyszyńska, M. Polanski, J. Bystrzycki, Int. J. Hydrogen Energ. 39 (2014) 9883–9887.

[43] C. Frances, N.L. Bolay, K. Belaroui, M.N. Pons, Int. J. Miner. Process. 61 (2001) 41–56.

[44] J. Yue, B. Klein, Miner. Eng. 18 (2005) 325–331.

[45] P.C. Kapur, D. Pande, D.W. Fuerstenau, Int. J. Miner. Process. 49 (1997) 223–236.

[46] C. Tangsathitkulchai, L.G. Austin, Powder Technol. 59 (1989) 285–293.

[47] J. Lee, Adv. Powder Technol. 23 (2012) 731–735.

[48] G. Matijašić, K. Žižek, A. Glasnović, Chem. Eng. Res. Des. 86 (2008) 384–389.

[49] Q. Zhao, G. Jimbo, Adv. Powder Technol. 2 (1991) 91–101.

[50] H. Shina, S. Lee, H.S. Jung, J. Kim, Ceram. Int. 39 (2013) 8963–8968.

[51] S. Pazesh, J. Gråsjö, J. Berggren, G. Alderborn, Int. J. Pharm. 528 (2017) 215–227.

[52] Y. Fukumori, I. Tamura, K. Jono, M. Miyamoto, H. Tokumitsu, H. Ichikawa, L.H. Block, Adv. Powder Technol. 9 (1998) 281–292.

[53] B.J. Marin, H. Deleu, Chem. Eng. Technol. 37 (2014) 888–890.

[54] P.L. Guzzo, J.B. Santos, R.C. David, Int. J. Miner. Process. 126 (2014) 41–48.

[55] S. Molina-Boisseau, N.L. Bolay, M. Pons, Powder Technol. 123 (2002) 282–291.

[56] S. Sakthivel, V.V. Krishnan, B. Pitchumani, Particuology 6 (2008) 120–124.

[57] F. Delogu, L. Takacs, J. Mater. Sci. 53 (2018) 13331–13342.

[58] P.A. Cundall, O.D.L. Strack, Géotechnique, 29 (1979) 47–65.

[59] S. Agrawala, R.K. Rajamani, P. Songfack, B.K. Mishra, Miner. Eng. 10 (1997) 215– 227.

[60] H. Mori, H. Mio, J. Kano, F. Saito, Powder Technol. 143–144 (2004) 230–239.

[61] R. Panjipour, K. Barani, Physicochem. Probl. Miner. Process. 54 (2018) 258–269.

[62] S. Rosenkranz, S. Breitung-Faes, A. Kwade, Powder Technol. 15 (2011) 224–230.

[63] D. Gudin, R. Turczyn, H. Mio, J. Kano, F. Saito, AIChE J. 52 (2006) 3421–3426.

[64] H. Mio, J. Kano, F. Saito, Chem. Eng. Sci. 59 (2014) 5909–5916.

[65] H. Mio, J. Kano, F. Saito, K. Kaneko, Int. J. Miner. Process. 74 (2014) 585–592.

[66] D.V.N. Prasad, J. Theuerkauf, Chem. Eng. Technol. 32 (2009) 1102–1106.

[67] X. Zhao, L. Shaw, Metall. Mater. Trans. A 48 (2017) 4324–4333.

[68] V.A. Rodriguez, R.M. Carvalho, L.M. Tavares, Miner. Eng. 127 (2018) 48–60.

[69] M.H. Wang, R.Y. Yang, A.B. Yu, Powder Technol. 223 (2012) 83–91.

[70] D. Geissbuhler, M.L. Sawley, Proc. of III International Conference on Particle-based Methods–Fundamentals and Applications (PARTICLES 2013) (2013) 236–246.

[71] H. Ashrafizadeh, M. Ashrafizaadeh, Adv. Powder Technol. 23 (2012) 708–716.

[72] L. Takacs, Chem. Soc. Rev. 42 (2013) 7649–7659.

[73] W. Spring, Am. J. Sci. 36 (1888) 214–217.

[74] M.C. Lea, Am. J. Sci. 46 (1893) 413–420.

[75] L. Takacs, J. Mater. Sci. 39 (2004) 4987–4993.

[76] T. Kato, G. Granata, Y. Tsunazawa, T. Takagi, C. Tokoro, Miner. Eng. 134 (2019) 365–371.

[77] C. Real, F.J. Gotor, Heliyon 5 (2019) e01227.

[78] E. Chicardi, F.J. Gotor, M.D. Alcalá, J.M. Córdoba, Powder Technol. 319 (2017) 12–18.

[79] H. Salazar-Tamayo, M.A. Márquez, C.A. Barrero, Powder Technol. 289 (2016) 126–134.

[80] G. Cagnetta, J. Huang, B. Wang, S. Deng, G. Yu, Chem. Eng. J. 291 (2016) 30–38.

[81] Z. Chen, S. Lu, Q. Mao, A. Buekens, Y. Wang, J. Yan, Environ. Sci. Pollut. Res. 24 (2017) 24562–24571.

[82] M. Erdemoğlu, S. Aydoğan, M. Canbazoğlu, Hydrometallurgy 86 (2007) 1–5.

[83] H.A. Baghbaderani, M.R. Rahimipour, M.D. Chermahini, Mater. Design 95 (2016) 54–62.

[84] F.J. Gotor, M. Achimovicova, C. Real, P. Balaz, Powder Technol. 233 (2013) 1–7.

[85] O.L. Arnache, J. Pino, L.C. Sánchez, J. Mater. Sci.: Mater. Electron. 27 (2016) 4120–4130.

[86] M. Matsuoka, J. Hirata, S. Yoshizawa, Chem. Eng. Res. Des. 88 (2010) 1169–1173.

[87] H. Sui, Y. Rong, J. Song, D. Zhang, H. Li, P. Wu, Y. Shen, Y. Huang, J. Hazard. Mater. 342 (2018) 201–209.

[88] Y. Konishi, K. Kadota, Y. Tozuka, A. Shimosaka, Y. Shirakawa, Powder Technol. 301 (2016) 220–227.

[89] K. Shimono, K. Kadota, Y. Tozuka, A. Shimosaka, Y. Shirakawa, J. Hidaka, Eur. J. Pharm. Sci. 30 (2015) 217–224.

[90] C.F. Burmeister, A. Stolle, R. Schmidt, K. Jacob, S. Breitung-Faes, A. Kwade, Chem. Eng. Technol. 37 (2014) 857–864.

[91] M. Minagawa, S. Hisatomi, T. Kato, G. Granata, C. Tokoro, Adv. Powder Technol. 29 (2018) 471–478.

[92] W. Tongamp, J. Kano, Y. Suzuta, F. Saito, N.J. Themelis, J. Mater. Cycles Waste Manag. 11 (2009) 32–37.

[93] H. Mio, S. Saeki, J. Kano, F. Saito, Environ. Sci. Technol. 36 (2002) 1344–1348.

[94] D. Camuffo, Microclimate for Cultural Heritage, 2nd ed. Elsevier, Amsterdam, 2014.

[95] R. Ravi, R. Vinu, S.N. Gummadi, Coulson and Richardson’s Chemical Engineering, 4th ed. Elsevier, Amsterdam, 2017.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る