リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Symmetry enhancement in a two-logarithm matrix model and the canonical tensor model」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Symmetry enhancement in a two-logarithm matrix model and the canonical tensor model

Sasakura, Naoki 京都大学 DOI:10.1093/ptep/ptab034

2021.04

概要

We study a one-matrix model of a real symmetric matrix with a potential which is a sum of two logarithmic functions and a harmonic one. This two-logarithm matrix model is the absolute square norm of a toy wave function which is obtained by replacing the tensor argument of the wave function of the canonical tensor model (CTM) with a matrix. We discuss a symmetry enhancement phenomenon in this matrix model and show that symmetries and dimensions of emergent spaces are stable only in a phase which exists exclusively for the positive cosmological constant case in the sense of CTM. This would imply the importance of the positivity of the cosmological constant in the emergence phenomena in CTM.

この論文で使われている画像

参考文献

[1] M. Reuter and F. Saueressig, Quantum Gravity and the Functional Renormalization Group: The Road

towards Asymptotic Safety (Cambridge University Press, Cambridge, 2019).

[2] R. Loll, Class. Quantum Grav. 37, 013002 (2020) [arXiv:1905.08669 [hep-th]] [Search INSPIRE].

[3] C. Rovelli and F. Vidotto, Covariant Loop Quantum Gravity: An Elementary Introduction to Quantum

Gravity and Spinfoam Theory (Cambridge University Press, Cambridge, 2014).

[4] S. Surya, Living Rev. Relativ. 22, 5 (2019) [arXiv:1903.11544 [gr-qc]] [Search INSPIRE].

[5] T. Konopka, F. Markopoulou, and L. Smolin, arXiv:hep-th/0611197 [Search INSPIRE].

[6] J. Ambjørn, B. Durhuus, and T. Jønsson, Mod. Phys. Lett. A 06, 1133 (1991).

[7] N. Sasakura, Mod. Phys. Lett. A 06, 2613 (1991).

[8] N. Godfrey and M. Gross, Phys. Rev. D 43, R1749(R) (1991).

[9] R. Gurau, Commun. Math. Phys. 304, 69 (2011) [arXiv:0907.2582 [hep-th]] [Search INSPIRE].

[10] P. Di Francesco, P. Ginsparg, and J. Zinn-Justin, Phys. Rep. 254, 1 (1995) [arXiv:hep-th/9306153]

[Search INSPIRE].

A more rigorous way of defining the integral would be to express the integration contour as a sum of

Lefschetz thimbles [33].

20/21

Downloaded from https://academic.oup.com/ptep/article/2021/4/043A01/6168688 by KYOTO UNIVERSITY Igaku Toshokan user on 05 July 2022

Fig.A.1. The Airy Ai function.

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

PTEP 2021, 043A01

N. Sasakura

21/21

Downloaded from https://academic.oup.com/ptep/article/2021/4/043A01/6168688 by KYOTO UNIVERSITY Igaku Toshokan user on 05 July 2022

[11] V. Bonzom, R. Gurau, A. Riello, and V. Rivasseau, Nucl. Phys. B 853, 174 (2011) [arXiv:1105.3122

[hep-th]] [Search INSPIRE].

[12] R. Gurau and J. P. Ryan, SIGMA 8, 020 (2012) [arXiv:1109.4812 [hep-th]] [Search INSPIRE].

[13] J. Ambjørn, J. Jurkiewicz, and R. Loll, Phys. Rev. Lett. 93, 131301 (2004) [arXiv:hep-th/0404156]

[Search INSPIRE].

[14] N. Sasakura, Int. J. Mod. Phys. A 27, 1250020 (2012) [arXiv:1111.2790 [hep-th]] [Search INSPIRE].

[15] N. Sasakura, Int. J. Mod. Phys. A 27, 1250096 (2012) [arXiv:1203.0421 [hep-th]] [Search INSPIRE].

[16] N. Sasakura, Int. J. Mod. Phys. A 28, 1350111 (2013) [arXiv:1305.6389 [hep-th]] [Search INSPIRE].

[17] G. Narain, N. Sasakura, and Y. Sato, J. High Energy Phys. 1501, 010 (2015) [arXiv:1410.2683

[hep-th]] [Search INSPIRE].

[18] D. Obster and N. Sasakura, Eur. Phys. J. C 77, 783 (2017) [arXiv:1704.02113 [hep-th]] [Search

INSPIRE].

[19] D. Obster and N. Sasakura, Prog. Theor. Exp. Phys. 2018, 043A01 (2018) [arXiv:1710.07449 [hep-th]]

[Search INSPIRE].

[20] L. Lionni and N. Sasakura, Prog. Theor. Exp. Phys. 2019, 073A01 (2019) [arXiv:1903.05944 [hep-th]]

[Search INSPIRE].

[21] N. Sasakura and S. Takeuchi, Eur. Phys. J. C 80, 118 (2020) [arXiv:1907.06137 [hep-th]] [Search

INSPIRE].

[22] D. Obster and N. Sasakura, Prog. Theor. Exp. Phys. 2020, 073B06 (2020) [arXiv:2004.03152 [hep-th]]

[Search INSPIRE].

[23] N. Sasakura, PoS CORFU2019, 192 (2020) [arXiv:2004.07419 [hep-th]] [Search INSPIRE].

[24] L. Paniak and N. Weiss, J. Math. Phys. 36, 2512 (1995) [arXiv:hep-th/9501037] [Search INSPIRE].

[25] V. A. Kazakov and P. Zinn-Justin, Nucl. Phys. B 546, 647 (1999) [arXiv:hep-th/9808043] [Search

INSPIRE].

[26] E. P. Wigner, Ann. Math. 62, 548 (1955).

[27] E. Brézin, C. Itzykson, G. Parisi, and J. B. Zuber, Commun. Math. Phys. 59, 35 (1978).

[28] J. Jurkiewicz, Phys. Lett. B 245, 178 (1990).

[29] I. M. Gelfand, M. M. Kapranov, and A. V. Zelevinsky, Discriminants, Resultants, and

Multidimensional Determinants (Birkhäuser, Boston, 1994).

[30] T. Castellani and A. Cavagna, J. Stat. Mech.: Theo. Exp. P2005, 05012 (2005)

[arXiv:cond-mat/0505032 [cond-mat.dis-nn]].

[31] L. Qi, arXiv:1201.3424 [math.SP].

[32] N. Sasakura and Y. Sato, Phys. Lett. B 732, 32 (2014) [arXiv:1401.2062 [hep-th]] [Search INSPIRE].

[33] E. Witten, AMS/IP Stud. Adv. Math. 50, 347 (2011) [arXiv:1001.2933 [hep-th]] [Search INSPIRE].

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る