リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「車両の加減速・操舵支援システムにおける判断・計画・制御の高度化に関する研究 (本文)」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

車両の加減速・操舵支援システムにおける判断・計画・制御の高度化に関する研究 (本文)

西脇, 和弘 慶應義塾大学

2022.09.05

概要

1.1 研究背景
1.1.1 自動車事故の動向
内閣府の調査[1][2]によると,近年の交通事故による死傷者数は減少傾向にある.Fig. 1-1 に示すように,平成 4 年の 24 時間死傷者は 11,452 人に達したが,翌年から減少傾向に転じている.死傷者は平成 21 年に 4,979 人となり 5,000 人を下回り,平成 28 年には 3,904 人となり 4,000 人を下回り,令和 2 年には 2,839 人となり初めて 3,000 人を下回った.

高速道路における交通事故発生件数の推移を Fig. 1-2 に示す.令和 2 年中の高速道路における交通事故発生件数は 4,649 件で,そのうち交通死亡事故 104 件であった.本事故による死傷者は 114人で,負傷者数は 7,570 人であった.前年と比較すると,交通事故発生件数及び負傷者数は減少し,死者数も 49 人(前年度比 30.1 %)減少した.高速道路は歩行者や自転車の通行がなく,原則として平面交差がないため,運転しやすい道路環境である.その一方,高速走行となるため,わずかな運転ミスが交通事故に結びつきやすい.そして,事故発生時は関係車両や死者が多数に及ぶ重大事故に発展することが多い.そのため,令和 2 年中における死亡事故率を高速道路と一般道路で比較すると,高速道路における死亡事故率(2.2 %)は,一般道路における死亡事故率(0.9 %)に比べて 2 倍以上となっている.令和 2 年中の高速道路における事故類型別交通事故発生状況をみると,車両相互の事故の割合(91.4 %)が最も高く,なかでも追突が多い.次いで高いのが車両単独事故の割合(7.5 %)で,これは一般道路(3.2 %)と比較しても高い.車両単独事故は防護柵等への衝突が最も多く,次いで中央分離帯への衝突が多い.また,法令違反別発生状況をみると,安全運転義務違反が 92.3 %を占めており,その内容は前方不注意(42.1 %),動静不注視(22.1 %),安全不確認(15.1 %)の順となっている.

内閣府は,交通安全対策基本法に基づき,陸上・海上及び航空交通の安全に関する総合的かつ長期的な施策の大綱である交通安全基本計画を 5 年ごとに作成している.第 10 次交通安全基本計画では,令和 2 年までに 24 時間死者数を 2,500 人以下とするのが目標である.交通事故による死傷者数は減少傾向にあるが,第 10 次交通安全基本計画の目標を達成するには至っていない.

そして,内閣府は新たに第 11 次交通安全基本計画(令和 3 年度~令和 7 年度)を定めている.第11 次交通安全基本計画の目標は,世界一安全な道路交通の実現を目指して「24 時間死者数 2,000 人以下」「重傷者が 22,000 人以下」としている.国際道路交通事故データベース(IRTAD)がデータを公表している 34 か国中の人口 10 万人当たりの 30 日以内死者数をみると,日本は平成 30 年で3.29 人と 8 番目に少ない.「24 時間死者数 2,000 人以下」を達成した場合,他の各国の交通事故情勢が現状と大きな変化がなければ,日本は最も交通事故が少ない国となる.

第 11 次交通安全基本計画では,目標の達成に向けて「人の観点」「車両の観点」「交通環境の観点」で様々な施策が計画されている.車両の観点では,人間はエラーを犯すものとの前提の下で,ヒューマンエラーが交通事故に結びつかないように安全運転サポート車の性能向上・普及促進等の車両安全対策が計画されている.

この論文で使われている画像

参考文献

[1]内閣府, 令和 3 年版交通安全白書, 特集「道路交通安全政策の新展開」―第 11 次交通安全基本計画による対策― (2021).

[2]内閣府, 令和 3 年版交通安全白書, 第 1 編 陸上交通 (2021).

[3]SAE, Taxonomy and definitions for terms related to driving automation systems for on road motor vehicles, J3016_201806 (2018).

[4]国土交通省, 自動運転の実現に向けた国土交通省の取り組み (2017), available from <https://www.mlit.go.jp/common/001227121.pdf>, (accessed on 1 May, 2022).

[5]矢野経済研究所, 2019 自動運転システムの可能性と将来展望, available from <https://www.yano.co.jp/press-release/show/press_id/2134>, (accessed on 1 May, 2022).

[6]内閣府, 官民 ITS 構想・ロードマップ (2021).

[7]内閣府, 戦略的イノベーション創造プログラム(SIP)第2期:自動運転(システムとサービスの拡張),availablefrom <https://www8.cao.go.jp/cstp/gaiyo/sip/keikaku2/4_jidosoko.pdf>, (accessed on 1 May, 2022).

[8]警察庁,改正道路交通法, <https://www.npa.go.jp/bureau/traffic/selfdriving/index.html>,(accessed on 1 May, 2022).

[9]HONDA, Honda の安全技術:ACC( アダプティブ・クルーズ・コントロール),<https://www.honda.co.jp/tech/auto/safety/ACC.html>, (accessed on 1 May, 2022).

[10]HONDA, Honda の安全技術:トラフィックジャムアシスト(渋滞運転支援機能),<https://www.honda.co.jp/tech/auto/safety/traffic_jam_assist.html>, (accessed on 1 May, 2022).

[11]Volkswagen,自動運転の基礎知識,<https://www.volkswagen.co.jp/ja/volkswagen/technology/autonomous-driving.html>, (accessed on 1 May, 2022).

[12]TESLA, 運転の未来, <https://www.tesla.com/jp/autopilot>, (accessed on 1 May, 2022).

[13]日産自動車, ProPILOT, <https://www.nissan.co.jp/BRAND/TFL/PPC/>, (accessed on 1 May,2022).

[14]横山利夫, 藤田進太郎, 武田政宣, 自動運転技術の現状と今後, 安全工学, Vol. 54, No. 3(2015), pp. 169-176.

[15]横山 利夫, 武田 政宣, 藤田 進太郎, 安井 裕司, Honda の運転支援および自動運転の現状と今後, 計測と制御, Vol. 54, No. 11 (2015), pp. 828-831.

[16]横山利夫, 波多野邦道, 小沢浩一郎, 樋山智, 小高賢二, 自動車業界における自動運転実用化に向けた取り組み, 学術の動向, Vol. 25, No. 5 (2020), pp. 5_17-5_21.

[17]保坂明夫, 青木啓二, 津川 定之, 自動運転 -システム構成と要素技術-, 森北出版(2015).

[18]日本ロボット学会, 香月理絵, 荒井幸代, 大前学, 大日方五郎, 川崎敦史, 橘川雄樹,小林祐一, 菅沼直樹, 田崎豪, 谷沢昭行, 新田修平, 野呂瀬琴, 馬場厚志, 藤吉弘亘, 目黒淳一, 森出茂樹, 谷口敦司, 山下倫央, 自動運転技術入門: AI×ロボティクスによる自動車の進化, オーム社 (2021).

[19]赤木康宏, 自動運転システムの行動決定方法, 名古屋大学未来社会創造機構 CASE 研究 会 ( 第 1 回 ) , available from <http://www.coi.nagoya- u.ac.jp/html/coiura/case_siryou/190123_1stCASE_akagisensei.pdf>, (accessed on 1 May,2022).

[20]L. Claussmann, M. Revilloud, S. Glaser and D. Gruyer, "A study on AI-based approaches for high-level decision making in highway autonomous driving," 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC) (2017), pp. 3671-3676.

[21]L. Claussmann, M. Revilloud, D. Gruyer and S. Glaser, "A review of motion planning for highway autonomous driving," in IEEE Transactions on Intelligent Transportation Systems, Vol.21, No. 5 (2020), pp. 1826-1848.

[22]Q. Liu, X. Li, S. Yuan and Z. Li, "Decision-making technology for autonomous vehicles: learning-based methods, applications and future outlook," 2021 IEEE International Intelligent Transportation Systems Conference (ITSC) (2021), pp. 30-37.

[23]Y. Yu, C. Lu, L. Yang, Z. Li, F. Hu, and J. Gong, "Hierarchical Reinforcement Learning Combined with Motion Primitives for Automated Overtaking," in 2020 IEEE Intelligent Vehicles Symposium (IV)(2020), pp. 1-6.

[24]X. Lu, K. Yuchen, Z. Peizhi, Z. Chenyu, and Y. Zhuoping, "Research on Behavior Decision-making System for Unmanned Vehicle," Automobile Technology (2018).

[25]N. D. Moura, R. Chatila, K. Evans, S. Chauvier, and E. Dogan, "Ethical decision making for autonomous vehicles," in 2020 IEEE Intelligent Vehicles Symposium (IV) (2020), pp. 2006- 2013.

[26]J. Leonard et al., "A Perception-Driven Autonomous Urban Vehicle," Journal of Field Robotics,Vol. 25 (2008), pp. 727-774.

[27]M. Montemerlo et al., "Junior: The Stanford Entry in the Urban Challenge," Journal of Field Robotics, Vol. 25 (2008), pp. 569-597.

[28]J. Ziegler et al., "Making Bertha Drive—An Autonomous Journey on a Historic Route," IEEE Intelligent Transportation Systems Magazine, Vol. 6, No. 2 (2014), pp. 8-20.

[29]C. Reinholtz et al., Team VictorTango's entry in the DARPA Urban Challenge. 2009 (2009), pp.125-162.

[30]A. Artuñedo, J. Godoy, and J. Villagra, "A decision-making architecture for automated driving without detailed prior maps," in 2019 IEEE Intelligent Vehicles Symposium (IV) (2019), pp.1645-1652.

[31]C. Chang et al., "Multi-point turn decision making framework for human-like automated driving," in 2017 IEEE 20th International Conference on Intelligent Transportation Systems(ITSC) (2017), pp. 1-6.

[32]P. F. Orzechowski, C. Burger, and M. Lauer, "Decision-Making for Automated Vehicles Using a Hierarchical Behavior-Based Arbitration Scheme," in 2020 IEEE Intelligent Vehicles Symposium (IV) (2020), pp. 767-774.

[33]H. Bey, F. Dierkes, S. Bayerl, A. Lange, D. Faßender, and J. Thielecke, "Optimization-based Tactical Behavior Planning for Autonomous Freeway Driving in Favor of the Traffic Flow," in 2019 IEEE Intelligent Vehicles Symposium (IV) (2019), pp. 1033-1040.

[34]D. Yang, K. Redmill, and Ö. Ü, "A Multi-State Social Force Based Framework for Vehicle- Pedestrian Interaction in Uncontrolled Pedestrian Crossing Scenarios," in 2020 IEEE Intelligent Vehicles Symposium (IV), 2020, pp. 1807-1812.

[35]L. Sun, W. Zhan, C. Chan, and M. Tomizuka, "Behavior Planning of Autonomous Cars with Social Perception," in 2019 IEEE Intelligent Vehicles Symposium (IV) (2019), pp. 207-213.

[36]N. Li, D. W. Oyler, M. Zhang, Y. Yildiz, I. Kolmanovsky, and A. R. Girard, "Game Theoretic Modeling of Driver and Vehicle Interactions for Verification and Validation of Autonomous Vehicle Control Systems," IEEE Transactions on Control Systems Technology, Vol. 26, No. 5(2018), pp. 1782-1797.

[37]Z. Kokkinogenis, M. Teixeira, P. M. d'Orey, and R. J. F. Rossetti, "Tactical Level Decision-Making for Platoons of Autonomous Vehicles Using Auction Mechanisms," in 2019 IEEE Intelligent Vehicles Symposium (IV) (2019), pp. 1632-1638.

[38]D. Isele, "Interactive Decision Making for Autonomous Vehicles in Dense Traffic," in 2019 IEEE Intelligent Transportation Systems Conference (ITSC) (2019), pp. 3981-3986.

[39]J. Chen, P. Zhao, H. Liang, and T. Mei, "A Multiple Attribute-based Decision Making model for autonomous vehicle in urban environment," in 2014 IEEE Intelligent Vehicles Symposium Proceedings (2014), pp. 480-485.

[40]C. Dong, J. M. Dolan, and B. Litkouhi, "Intention estimation for ramp merging control in autonomous driving," in 2017 IEEE Intelligent Vehicles Symposium (IV) (2017), pp. 1584- 1589.

[41]D. Iberraken, L. Adouane, and D. Denis, "Safe Autonomous Overtaking Maneuver based on Inter-Vehicular Distance Prediction and Multi-Level Bayesian Decision-Making," in 2018 21st International Conference on Intelligent Transportation Systems (ITSC) (2018), pp. 3259-3265.

[42]D. Iberraken, L. Adouane, and D. Denis, "Reliable Risk Management for Autonomous Vehicles based on Sequential Bayesian Decision Networks and Dynamic Inter-Vehicular Assessment," in 2019 IEEE Intelligent Vehicles Symposium (IV) (2019), pp. 2344-2351.

[43]W. Zhan et al., "Interaction dataset: An international, adversarial and cooperative motion dataset in interactive driving scenarios with semantic maps," arXiv preprint arXiv:1910.03088 (2019).

[44]J. Bock, R. Krajewski, T. Moers, S. Runde, L. Vater, and L. Eckstein, "The ind dataset: A drone dataset of naturalistic road user trajectories at german intersections," in 2020 IEEE Intelligent Vehicles Symposium (IV) (2019), pp. 1929-1934.

[45]C. Vallon, Z. Ercan, A. Carvalho, and F. Borrelli, "A machine learning approach for personalized autonomous lane change initiation and control," in 2017 IEEE Intelligent Vehicles Symposium(IV) (2017), pp. 1590-1595.

[46]Y. Liu, X. Wang, L. Li, S. Cheng, and Z. Chen, "A Novel Lane Change Decision-Making Model of Autonomous Vehicle Based on Support Vector Machine," IEEE Access, Vol. 7 (2019), pp.26543-26550.

[47]R. Tami, B. Soualmi, A. Doufene, J. Ibanez, and J. Dauwels, "Machine learning method to ensure robust decision-making of AVs," in 2019 IEEE Intelligent Transportation Systems Conference(ITSC) (2019), pp. 1217-1222.

[48]C. Chen, A. Seff, A. Kornhauser, and J. Xiao, "DeepDriving: Learning Affordance for Direct Perception in Autonomous Driving," in 2015 IEEE International Conference on Computer Vision (ICCV) (2015), pp. 2722-2730.

[49]M. Bojarski et al., "End to end learning for self-driving cars," arXiv preprint arXiv:1604.07316(2016).

[50]C. Hubschneider, A. Bauer, M. Weber, and J. M. Zöllner, "Adding navigation to the equation: Turning decisions for end-to-end vehicle control," in 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC) (2017), pp. 1-8.

[51]F. Codevilla, M. Müller, A. López, V. Koltun, and A. Dosovitskiy, "End-to-End Driving Via Conditional Imitation Learning," in 2018 IEEE International Conference on Robotics and Automation (ICRA) (2018), pp. 4693-4700.

[52]K. Mori, H. Fukui, T. Murase, T. Hirakawa, T. Yamashita, and H. Fujiyoshi, "Visual Explanation by Attention Branch Network for End-to-end Learning-based Self-driving," in 2019 IEEE Intelligent Vehicles Symposium (IV) (2019), pp. 1577-1582.

[53]L. Caltagirone, M. Bellone, L. Svensson, and M. Wahde, "LIDAR-based driving path generation using fully convolutional neural networks," in 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC) (2017), pp. 1-6.

[54]M. Wulfmeier, D. Rao, D. Z. Wang, P. Ondruska, and I. Posner, "Large-scale cost function learning for path planning using deepinverse reinforcement learning," The International Journal of Robotics Research, Vol. 36, No. 10 (2017), pp. 1073-1087.

[55]C. Muench and D. M. Gavrila, "Composable Q- Functions for Pedestrian Car Interactions," in 2019 IEEE Intelligent Vehicles Symposium (IV) (2019), pp. 905-912.

[56]X. Lin, J. Zhang, J. Shang, Y. Wang, H. Yu, and X. Zhang, "Decision Making through Occluded Intersections for Autonomous Driving," in 2019 IEEE Intelligent Transportation Systems Conference (ITSC) (2019), pp. 2449-2455.

[57]C. Hubmann, N. Quetschlich, J. Schulz, J. Bernhard, D. Althoff, and C. Stiller, "A POMDP Maneuver Planner For Occlusions in Urban Scenarios," in 2019 IEEE Intelligent Vehicles Symposium (IV) (2019), pp. 2172-2179.

[58]D. González, J. Pérez, V. Milanés and F. Nashashibi, "A review of motion planning techniques for automated vehicles," IEEE Transactions on Intelligent Transportation Systems, Vol.17, No.4 (2016), pp.1135-1145.

[59]J. Bohren et al., “Little Ben: The Ben Franklin racing team’s entry in the 2007 darpa urban challenge,” J. Field Robot., Vol. 25, No. 9 (2008), pp. 598–614.

[60]C. Urmson et al., “Autonomous driving in urban environments: Boss and the urban challenge,”J. Field Robot., Vol. 25, No. 8 (2008), pp. 425–466.

[61]M. Pivtoraiko and A. Kelly, “Efficient constrained path planning via search in state lattices,” in Proc. Int. Symp. Artif. Intell., Robot., Autom. Space (2005), pp. 1–7.

[62]Y. Kuwata et al., “Real-time motion planning with applications to autonomous urban driving,”IEEE Trans. Control Syst. Technol., Vol. 17, No. 5 (2009), pp. 1105–1118.

[63]D. Braid, A. Broggi, and G. Schmiedel, “The terramax autonomous vehicle,” J. Field Robot.,Vol. 23, No. 9 (2006), pp. 693–708.

[64]J.-H. Ryu, D. Ogay, S. Bulavintsev, H. Kim, and J.-S. Park, “Development and Experiences of an Autonomous Vehicle for High-Speed Navigation and Obstacle Avoidance,” Frontiers of Intelligent Autonomous Systems. Berlin, Germany: Springer-Verlag (2013), pp. 105–116.

[65]J. Reeds and L. Shepp, “Optimal paths for a car that goes both forwards and backwards,” Pacific J. Math., Vol. 145, No. 2 (1990), pp. 367–393.

[66]M. F. Hsieh and U. Ozguner, “A parking algorithm for an autonomous vehicle,” in Proc. IEEE Intell. Veh. Symp. (2008), pp. 1155–1160.

[67]T. Fraichard and A. Scheuer, “From reeds and shepp’s to continuouscurvature paths,” IEEE Trans. Robot., Vol. 20, No. 6 (2004), pp. 1025–1035.

[68]J. Funke et al., “Up to the limits: Autonomous audi TTS,” in Proc. IV Symp. (2012), pp. 541–547.

[69]P. Petrov and F. Nashashibi, “Modeling and nonlinear adaptive control for autonomous vehicleovertaking,” IEEE Trans. Intell. Transp. Syst., Vol. 15, No. 4 (2014), pp. 1643–1656.

[70]M. McNaughton, C. Urmson, J. Dolan, and J.-W. Lee, “Motion planning for autonomous driving with a conformal spatiotemporal lattice,” in Proc. IEEE ICRA (2011), pp. 4889–4895.

[71]J. Perez, R. Lattarulo, and F. Nashashibi, “Dynamic trajectory generation using continuous- curvature algorithms for door to door assistance vehicles,” in Proc. IEEE Intell. Veh. Symp.(2014), pp. 510–515.

[72]D. Gonzalez, J. Perez, R. Lattarulo, V. Milanes, and F. Nashashibi, “Continuous curvature planning with obstacle avoidance capabilities in urban scenarios,” in Proc. IEEE 7th Int. ITSC(2014), pp. 1430–1435.

[73]S. Thrun et al., “Stanley: The robot that won the darpa grand challenge,” J. Field Robot., Vol.23, No. 9 (2006), pp. 661–692.

[74]A. Piazzi, C. G. Lo Bianco, M. Bertozzi, A. Fascioli, and A. Broggi, “Quintic g2-splines for the iterative steering of vision-based autonomous vehicles,” IEEE Trans. Intell. Transp. Syst.,Vol. 3, No. 1 (2002), pp. 27–36.

[75]L. B. Cremean et al., “Alice: An information-rich autonomous vehicle for high-speed desert navigation,” J. Field Robot., Vol. 23, No. 9 (2006), pp. 777–810.

[76]D. Kogan and R. Murray, “Optimization-based navigation for the darpa grand challenge,” inProc. CDC (2006), pp. 1–6.

[77]D. Dolgov, S. Thrun, M. Montemerlo, and J. Diebel, “Path planning for autonomous vehicles in unknown semi-structured environments,” Int. J. Robot. Res., Vol. 29, No. 5 (2010), pp. 485– 501.

[78]宇野篤也, 阪口健, 加藤晋, 津川定之, 車両間通信を用いた車両群の合流制御アルゴリズム, 計測自動制御学会論文集, Vol. 36, No. 8 (2000), pp. 684-691.

[79]Lu, X. and Hedrick, J., Longitudinal control algorithm for automated vehicle merging,International Journal of Control, Vol. 76, No. 2 (2003), pp. 193–202.

[80]Lu, X., Tan, H., Shladover, S. and Hedrick, J., Automated vehicle merging maneuver implementation for AHS, Vehicle System Dynamics, Vol. 41, No. 2 (2004), pp. 85–107.

[81]谷田公二, 木村真弘, 吉田雄一, 自動運転車制御へ向けた高速道路での合流行動モデル, 自動車技術会論文集, Vol. 48, No. 4 (2017), pp. 885-890.

[82]原田晃汰, 奥田裕之, 鈴木達也, 西郷慎太朗, 井上聡, 本線走行車の合流受容性を考慮したモデル予測型合流車速制御手法の提案, 自動車技術会論文集, Vol. 49, No. 5 (2018),pp. 1011-1017.

[83]武田政宣, 橋本泰治, 車両制御システム,車間制御方法,および車両制御プログラム,特許第 6327424 号 (2018).

[84]竹本雅憲, 坂口靖雄, 樋口和則, 名切末晴, 小花麻純, 佐々木和也, 車線変更における運転行動評価指標の構築, 自動車技術会論文集, Vol. 42, No. 1 (2011), pp. 49-54.

[85]Xiao, W., Cassandras, C. G., “Decentralized optimal merging control for connected and automated vehicles with safety constraint guarantees,” Automatica, Vol. 123 (2021).

[86]Xiao, W., Cassandras, C. G., “Decentralized optimal merging control for connected and automated vehicles on curved roads,” 2021 60th IEEE Conference on Decision and Control (CDC) (2021).

[87]Sonbolestan, M. and Monajjem, S., Optimal control of connected and automated vehicles at highway on-ramps to reduce vehicles fuel consumption and increase passenger comfort, Control Engineering Practice, Vol. 109 (2021).

[88]Ioannis, A., Ioannis, K. and Markos, P., Optimal vehicle trajectory planning in the context of cooperative merging on highways, Transportation Research Part C: Emerging Technologies,Vol. 71 (2016), pp. 464-488.

[89]向井正和, 野口凌介, 川邊武俊,混合整数計画法を用いたモデル予測制御による 1 車線道路への合流経路生成, 計測自動制御学会論文集, Vol. 52, No. 11 (2016), pp. 625-630.

[90]古賀あやめ, 奥田裕之, 田崎勇一, 鈴木達也, 原口健太郎, 康子博, 運転個性を反映したモデル予測型自動運転システム, 自動車技術会論文集, Vol. 47, No. 6 (2016), pp. 1431-1437.

[91]Su, C., Deng, W., He, R., Wu, J. and Jing, Y., “Personalized adaptive cruise control considering drivers' characteristics,” SAE 2018 World Congress Experience (2018), Paper No. 2018-01-0591.

[92]Butakov, V. and Ioannou, P., “Personalized Driver/Vehicle Lane Change Models for ADAS,”IEEE Transactions on Control Systems Technology, Vol. 64, No. 10 (2015), pp. 4422-4431.

[93]Liang, C. and Peng, H., Optimal adaptive cruise control with guaranteed string stability, VehicleSystem Dynamics, Vol. 31 (1999), pp. 313-330.

[94]山村吉典, 瀬戸陽治, 永井正夫, 車車間通信を用いた車群安定 ACC の一設計法, 第 50回自動制御連合講演会 (2007).

[95]大前学, 小木津武樹, 福田亮子, 江文博, 大型トラックの協調型 ACC における車間距離制御アルゴリズムの開発, 自動車技術会論文集, Vol. 44, No. 6 (2013), pp. 1509-1515.

[96]東又章, 安達和孝, 橋詰武徳, 田家智, ブレーキ制御付 ACC の車間距離制御系の設計,自動車技術会学術講演会前刷集, No. 114-99 (1999).

[97]安達和孝, 金井喜美雄, 越智徳昌, 車間距離制御システムの二自由度制御手法の応用,計測と制御, Vol. 44, No. 7 (2005), pp. 504-509.

[98]和田隆広, 土居俊一, 津留直彦, 伊佐治和美, 金子弘, 熟練ドライバの運転行動解析に基づく減速支援制御手法, デンソーテクニカルレビュー, Vol. 15 (2010), pp. 95–101.

[99]吉本達也, 深尾隆則, ドライバ特性を考慮したアダプティブクルーズコントロール,日本機械学会論文集, Vol. 84, No. 868 (2018).

[100]Plessen, M., Bernardini, D., Esen, H. and Bemporad, A., Spatial-based predictive control and geometric corridor planning for adaptive cruise control coupled with obstacle avoidance, IEEE Transactions on Control Systems Technology, Vol. 26, No. 1 (2018), pp. 38-50.

[101]Moser, D., Schmied, R. and Waschl, H., Flexible spacing adaptive cruise control using stochastic model predictive control, IEEE Transactions on Control Systems Technology, Vol. 26, No. 1 (2018), pp. 114-127.

[102]Takahama, T. and Akasaka, D., Model predictive control approach to design practical adaptive cruise control for traffic jam, International Journal of Automotive Engineering, Vol. 9, No. 3 (2018), pp. 99-104.

[103]ISO 22179:2009, Intelligent transport systems — Full speed range adaptive cruise control(FSRA) systems — Performance requirements and test procedures.

[104]ISO 22839:2013, Intelligent transport systems — Forward vehicle collision mitigation systems— Operation, performance, and verification requirements.

[105]安部正人, 自動車の運動と制御 [第 2 版], 東京電機大学出版局 (2012).

[106]Toledo, T., Koutsopoulos, H. and Ben-Akiva, M., Estimation of an integrated driving behavior model, Transportation Research Part C: Emerging Technologies, Vol. 17, No. 4 (2009), pp. 365-380.

[107]Tanaka, T., Nakajima, S., Urabe, T. and Tanaka, H., Development of lane keeping assist system using lateral-position-error control at forward gaze point, SAE 2016 World Congress Experience(2016), Paper No. 2016-01-0116.

[108]ヤン・M・マチエヨフスキー著, 足立修一, 菅野政明 訳, モデル予測制御, 東京電機大学出版局 (2005).

[109]大塚敏之, 非線形 Receding Horizon 制御の計算方法について, 計測と制御, Vol. 41, No.5(2002), pp. 366-371.

[110]大塚敏之, 非線形最適制御入門, コロナ社 (2011).

[111]Toshinobu Shintai, モデル予測制御 設計実装ワークフロー紹介 (2022), available from <https://github.com/mathworks/mpc_implementation_example>, (accessed on 15 June, 2022).

[112]吉本達也, 深尾隆則, 横小路泰義, 伊能寛, 松本平樹, 乗り心地と追従性を両立する自動車の自動操舵制御, 自動車技術会論文集, Vol. 47, No. 4 (2016), pp. 997-1002.

[113]吉田秀久, 小嶺長芳, 山口秀谷, 操舵トルクによるドライバモデルの基礎的検討(進路変更と車線維持の動作遷移モデル), 日本機械学会論文集, Vol. 81, No. 826 (2015).

[114]Treiber, M., Hennecke, A. and Helbing, D., Congested traffic states in empirical observations and microscopic simulations, Physical Review E, Vol. 62, No. 2 (2000).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る