リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Mitochondrial Genomes of Hemiarma marina and Leucocryptos marina Revised the Evolution of Cytochrome c Maturation in Cryptista」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Mitochondrial Genomes of Hemiarma marina and Leucocryptos marina Revised the Evolution of Cytochrome c Maturation in Cryptista

久米, 慶太郎 白鳥, 峻志 石田, 健一郎 橋本, 哲男 稲垣, 祐司 Nishimura, Yuki Sonehara, Keito Tanifuji, Goro Ohkuma, Moriya 筑波大学 DOI:10.3389/fevo.2020.00140

2020.10.14

概要

Two evolutionarily distinct systems for cytochrome c maturation in mitochondria—Systems I and III—have been found among diverse aerobic eukaryotes. System I requires a set of proteins including mitochondrion-encoded CcmA, CcmB, CcmC, and CcmF (or a subset of the four proteins). On the other hand, System III is operated exclusively by nucleus-encoded proteins. The two systems are mutually exclusive among eukaryotes except a single organism possessing both. Recent advances in understanding both diversity and phylogeny of eukaryotes united cryptophytes, goniomonads, Hemiarma marina, kathablepharids and Palpitomonas bilix into one of the major taxonomic assemblages in eukaryotes (Cryptista). Among the lineages/species in Cryptista, the mitochondrial genomes (mtDNAs) have been completed for multiple cryptophytes, a goniomonad and P. bilix, and ccm genes were found solely in the P. bilix mtDNA. Nevertheless, we have been unsure whether H. marina and/or kathablepharids use System I for cytochrome c maturation, as no mtDNA was available for either of the two cryptist members. In this study, we determined the complete sequences of the mtDNAs of H. marina and a kathablepharid Leucocryptos marina, and found ccmA, ccmC, and ccmF in the former genome. Curiously, the ccm genes found in the H. marina mtDNA showed no phylogenetic affinity to the P. bilix homologs, unfavoring vertical inheritance of the ccm genes in the mtDNA evolution in Cryptista. Finally, we propose revised scenarios for the evolution of cytochrome c maturation systems in Cryptista by incorporating the mtDNA data obtained in this study.

この論文で使われている画像

参考文献

illuminates early mitochondrial genome reduction. Curr. Biol. 27, 3717–3724.

doi: 10.1016/j.cub.2017.10.051

Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A., and Jermiin,

L. S. (2017). ModelFinder: fast model selection for accurate phylogenetic

estimates. Nat. Methods 14, 587–589. doi: 10.1038/nmeth.4285

Katoh, K., Misawa, K., Kuma, K., and Miyata, T. (2002). MAFFT: a novel method

for rapid multiple sequence alignment based on fast Fourie transform. Nucl.

Acids Res. 30, 3059–3066. doi: 10.1093/nar/gkf436

Katoh, K., and Standley, D. M. (2013). MAFFT multiple sequence alignments

software version 7: improvements in performance and usability. Mol. Biol. Evol.

30, 772–780. doi: 10.1093/molbev/mst010

Kim, E., Lane, C. E., Curtis, B. A., Kozera, C., Bowman, S., Archibald, J. M.,

et al. (2008). Complete sequence and analysis of the mitochondrial genome

of Hemiselmis andersenii CCMP644 (Cryptophyceae). BMC Genomics 9:215.

doi: 10.1186/1471-2164-9-215

Kim, J. I., Yoon, H. S., Yi, G., Shin, W., and Archibald, J. M. (2018).

Comparative mitochondrial genomics of cryptophyte algae: gene

shuffling and dynamic mobile genetic elements. BMC Genomics 19:275.

doi: 10.1186/s12864-018-4626-9

Kranz, R., Lill, R., Goldman, B., Bonnard, G., and Merchant, S. (1998). Molecular

mechanisms of cytochrome c biogenesis: three distinct systems. Mol. Microbiol.

29, 383–396. doi: 10.1046/j.1365-2958.1998.00869.x

Lartillot, N., Rodrigue, N., Stubbs, D., and Richer, J. (2013). PhyloBayes MPI:

phylogenetic reconstruction with infinite mixtures of profiles in a parallel

environment. Syst. Biol. 62, 611–615. doi: 10.1093/sysbio/syt022

Meyer, E. H., Giegé, P., Gelhaye, E., Rayapuram, N., Ahuja, U., ThönyMeyer, L., et al. (2005). AtCCMH, an essential component of the ctype cytochrome maturation pathway in Arabidopsis mitochondria, interacts

with apocytochrome c. Proc. Natl. Acad. Sci. U.S.A. 102, 16113–16118.

doi: 10.1073/pnas.0503473102

Nguyen, L. T., Schmidt, H. A., von Haeseler, A., and Minh, B. Q. (2015). IQ-TREE:

a fast and effective stochastic algorithm for estimating maximum-likelihood

phylogenies. Mol. Biol. Evol. 32, 268–274. doi: 10.1093/molbev/msu300

Nishimura, Y., Kamikawa, R., Hashimoto, T., and Inagaki, Y. (2012). Separate

origins of group I introns in two mitochondrial genes of the katablepharid

Leucocryptos marina. PLoS ONE 7:3e37307. doi: 10.1371/journal.pone.0

037307

Nishimura, Y., Kamikawa, R., Hashimoto, T., and Inagaki, Y. (2014). An intronic

open reading frame was released from one of group II introns in the

mitochondrial genome of the haptophyte Chrysochromulina sp. NIES-1333.

Mob. Genet. Elements 4:e29384. doi: 10.4161/mge.29384

Nishimura, Y., Tanifuji, G., Kamikawa, R., Yabuki, A., Hashimoto, T., and Inagaki,

Y. (2016). Mitochondrial genome of Palpitomonas bilix: derived genome

structure and ancestral system for cytochrome c maturation. Genome Biol. Evol.

8, 3090–3098. doi: 10.1093/gbe/evw217

Nurk, S., Bankevich, A., Antipov, D., Gurevich, A. A., Korobeynikov, A.,

Lapidus, A., et al. (2013). Assembling single-cell genomes and minimetagenomes from chimeric MDA products. J. Comput. Biol. 20, 714–737.

doi: 10.1089/cmb.2013.0084

Nurk, S., Meleshko, D., Korobeynikov, A., and Pevzner, P. A. (2017).

metaSPAdes: a new versatile metagenomic assembler. Genome Res. 27, 824–834.

doi: 10.1101/gr.213959.116

Pettigrew, G. W., Aviram, I., and Schejter, A. (1975). Physicochemical properties

of two atypical cytochromes c, Crithidia cytochrome c-557 and Euglena

cytochrome c-558. Biochem. J. 149, 155–167. doi: 10.1042/bj1490155

Sandres, C., Turkarslan, S., Lee, D. W., and Daldal, F. (2010). Cytochrome

c biogenesis: the Ccm system. Trends Microbiol. 10, 266–274.

doi: 10.1016/j.tim.2010.03.006

Allen, J. W. (2011). Cytochrome c biogenesis in mitochondria – systems III and V.

FEBS J. 278, 4198–4216. doi: 10.1111/j.1742-4658.2011.08231.x

Allen, J. W., Ginger, M. L., and Ferguson, S. J. (2004). Maturation of the

unusual single-cysteine (XXXCH) mitochondrial c-type cytochromes found in

trypanosomatids must occur through a novel biogenesis pathway. Biochem. J.

383, 537–542. doi: 10.1042/BJ20040832

Allen, J. W., Jackson, A. P., Rigden, D. J., Willis, A. C., Ferguson, S.

J., and Ginger, M. L. (2008). Order within a mosaic distribution of

mitochondrial c-type cytochrome biogenesis systems? FEBS J. 275, 2385–2402.

doi: 10.1111/j.1742-4658.2008.06380.x

Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J.

(1990). Basic local alignment search tool. J. Mol. Biol. 215, 403–410.

doi: 10.1016/S0022-2836(05)80360-2

Ambler, R. P., Kamen, M. D., Bartsch, R. G., and Meyer, T. E. (1991). Amino acid

sequences of Euglena viridis ferredoxin and cytochromes c. Biochem. J. 276,

47–52. doi: 10.1042/bj2760047

Babbitt, S. E., Sutherland, M. C., San Francisco, B., Mendez, D. L., and Kranz, R. G.

(2015). Mitochondrial cytochrome c biogenesis: no longer an enigma. Trends

Biochem. Sci. 40, 446–455. doi: 10.1016/j.tibs.2015.05.006

Bertini, I., Cavalloro, G., and Rosato, A. (2007). Evolution of mitochondrial-type

cytochrome c domains and of the protein machinery for their assembly. J. Inorg.

Biochem. 101, 1798–1811. doi: 10.1016/j.jinorgbio.2007.02.001

Burki, F., Okamoto, N., Pombert, J. F., and Keeling, P. J. (2012). The evolutionary

history of haptophytes and cryptophytes: phylogenomic evidence for separate

origins. Proc. Biol. Sci. 279, 2246–2254. doi: 10.1098/rspb.2011.2301

Bushnell, G. W., Louie, G. V., and Brayer, G. D. (1990). High-resolution threedimensional structure of horse heart cytochrome c. J. Mol. Biol. 214, 585–595.

doi: 10.1016/0022-2836(90)90200-6

Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., et al.

(2009). BLAST+: architecture and applications. BMC Bioinformatics 10:421.

doi: 10.1186/1471-2105-10-421

Capella-Gutiérrez, S., Silla-Martínez, J. M., and Gabaldón, T. (2009). trimAl: a

tool for automated alignment trimming in large-scale phylogenetic analyses.

Bioinformatics 25, 1972–1973. doi: 10.1093/bioinformatics/btp348

Cenci, U., Sibbald, S. J., Curtis, B. A., Kamikawa, R., Eme, L., Moog, D., et al. (2018).

Nuclear genome sequence of the plastid-lacking cryptomonad Goniomonas

avonlea provides insights into the evolution of secondary plastids. BMC Biol.

16:137. doi: 10.1186/s12915-018-0593-5

Chen, S., Zhou, Y., Chen, Y., and Gu, J. (2018). fastp: an ultrafast all-in-one FASTQ preprocessor. Bioinformatics 34, 884–890.

doi: 10.1093/bioinformatics/bty560

Curtis, B. A., Tanifuji, G., Burki, F., Gruber, A., Irimia, M., Maruyama, S.,

et al. (2012). Algal genomes reveal evolutionary mosaicism and the fate of

nucleomorphs. Nature 492, 59–65. doi: 10.1038/nature11681

Fu, L., Niu, B., Zhu, Z., Wu, S., and Li, W. (2012). CD-HIT: accelerated for

clustering the next-generation sequencing data. Bioinformatics 28, 3150–3152.

doi: 10.1093/bioinformatics/bts565

Hamel, P., Corvest, V., Giegé, P., and Bonnard, G. (2009). Biochemical

requirements for the maturation of mitochondrial c-type cytochromes.

Biochim. Biophys. Acta. 1793, 125–138. doi: 10.1016/j.bbamcr.2008.06.017

Hauth, A. M., Maier, U. G., Lang, B. F., and Burger, G. (2005). The

Rhodomonas salina mitochondrial genome: bacteria-like operons, compact

gene arrangement and complex repeat region. Nucl. Acids Res. 33, 4433–4442.

doi: 10.1093/nar/gki757

Janouškovec, J., Tikhonenkov, D. V., Burki, F., Howe, A. T., Rohwer,

F. L., Mylnikov, A. P., et al. (2017). A new lineage of eukaryotes

Frontiers in Ecology and Evolution | www.frontiersin.org

10

June 2020 | Volume 8 | Article 140

Nishimura et al.

Mitochondrial Genomes of Hemiarma marina and Leucocryptos marina

Yabuki, A., Inagaki, Y., and Ishida, K. (2010). Palpitomonas bilix gen. et sp.

nov.: a novel deep-branching heterotroph possibly related to Archaeplastida or

Hacrobia. Protist 161, 523–538. doi: 10.1016/j.protis.2010.03.001

Yabuki, A., Kamikawa, R., Ishikawa, S. A., Kolisko, M., Kim, E., Tanabe, A. S., et al.

(2014). Palpitomonas bilix represents a basal cryptist lineage: insight into the

character evolution in cryptista. Sci. Rep. 4:4641. doi: 10.1038/srep04641

Shalchian-Tabrizi, K., Bråte, J., Logares, R., Klaveness, D., Berney, C.,

and Jakobsen, K. S. (2008). Diversification of unicellular eukaryotes;

cryptomonad colonizations of marine and fresh waters inferred from

revised 18S rRNA phylogeny. Environ. Microbiol. 10, 2635–2644.

doi: 10.1111/j.1462-2920.2008.01685.x

Shimodaira, H. (2002). An approximately unbiased test of phylogenetic

tree selection. Syst. Biol. 51, 492–508. doi: 10.1080/106351502900

69913

Shimodaira, H., and Hasegawa, M. (2001). CONSEL: For assessing the

confidence of phylogenetic tree selection. Bioinformatics 17, 1246–1247.

doi: 10.1093/bioinformatics/17.12.1246

Shiratori, T., and Ishida, K. A. (2016). A new heterotrophic cryptomonad:

Hemiarma marina n. g., n. sp. J. Eukaryot. Microbiol. 63, 804–812.

doi: 10.1111/jeu.12327

Wideman, J. G., Monier, A., Rodríguez-Martínez, R., Leonard, G., Cook, E.,

Poirier, C., et al. (2020). Unexpected mitochondrial genome diversity revealed

by targeted single-cell genomics of heterotrophic flagellated protists. Nat.

Microbiol. 5, 154–165. doi: 10.1038/s41564-019-0605-4

Frontiers in Ecology and Evolution | www.frontiersin.org

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Nishimura, Kume, Sonehara, Tanifuji, Shiratori, Ishida,

Hashimoto, Inagaki and Ohkuma. This is an open-access article distributed under

the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

11

June 2020 | Volume 8 | Article 140

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る