リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Statistical analyses of optically selected galaxy clusters from Subaru Hyper Suprime-Cam」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Statistical analyses of optically selected galaxy clusters from Subaru Hyper Suprime-Cam

村田, 龍馬 東京大学 DOI:10.15083/0002004707

2022.06.22

概要

Cosmological observations in the last twenty years have established the standard Λdominated Cold Dark Matter (ΛCDM) cosmological model based on General Relativity for the gravity theory thanks to the increasing amount of observational data. It is essential to validate the consistency of this model with other independent cosmological probes or to constrain extensions of the standard model such as self-interacting dark matter, time-evolving dark energy, and modified gravity with observational data.

Galaxy clusters are the most massive gravitationally bound structure in the Universe, which form in dark matter halos after interactions between gravitational dynamics and baryonic process related to galaxy formation. Observations of galaxy clusters in the literature have revealed and constrained the existence and nature of dark matter, dark energy, baryonic matter, and galaxy evolution and formation with other cosmological and observational probes.

Given the smaller number of such massive dark matter halos in which galaxy clusters reside, we require deep imaging data from wide field-of-view surveys to investigate the statistical properties of galaxy clusters over a wide redshift range. The recent development of wide-field optical imaging surveys such as the Hyper SuprimeCam Subaru Strategic Program (HSC-SSP) makes an optical selection of galaxy clusters based on red member galaxies in such cluster regions particularly powerful, typically with a larger number of galaxy clusters than those selected by X-ray or radio wavelengths at present.

With the same imaging data, such wide-field optical imaging surveys also enable us to calibrate the relation of galaxy cluster mass (M) and the number of red member galaxies above some luminosity threshold for each cluster (N), called optical richness, through weak gravitational lensing effects around galaxy clusters by statistically averaging over a large number of weakly and systematically deformed shapes of distant galaxies to reveal their mass profiles with equal sensitivity to the dark and baryonic matter. Constraining this mass-richness relation via weak gravitational lensing is fundamentally important to connect theories or simulations with observations on galaxy clusters, since the halo mass determine the physical properties dominantly such as density profiles of dark matter halo and galaxy evolution and formation physics. Also, constraining the mass distribution function of dark matter halos at galaxy cluster mass scales leads to cosmological parameter estimations.

Among the physical properties of galaxy clusters, the splashback radius has been recently proposed as a physical boundary of dark matter halos at the outskirts from a suite of high-resolution N-body simulations, which separates orbiting from accreting materials (e.g., dark matter and galaxies) as a sharp density edge. At the splashback radius, the logarithmic derivative of density profiles is predicted to drop significantly over a narrow range of radius due to piling up of materials with small radial velocities at their first orbital apocenter after infall into halos. Importantly, recent observational constraints from different survey data in the literature on the splashback radius around optically selected galaxy clusters from an optical cluster-finding algorithm, called redMaPPer, have shown that the observed splashback radius is ~20% smaller than that predicted by N-body simulations under the ΛCDM model at a high significance (~4σ), with the help of the mass-richness relation from weak gravitational lensing effects. These observations with high signal-to-noise ratios are based on statistical measurements of projected photometric galaxy densities around galaxy clusters, since dynamics of galaxies are expected to follow dark matter distribution in the outskirts based on gravitational potentials dominantly determined by the larger amount of dark matter. The dependence of the splashback radius on new physics such as self-interacting dark matter, time-evolving dark energy, and modified gravity have been investigated in the literature over the last five years to try to explain the deviation in the observed splashback radius from the standard model. The features of the splashback radius have also been known as probes of galaxy formation and evolution with galaxy color or magnitude cuts.

In this thesis, we present observational and statistical studies of optically selected galaxy clusters on the mass-richness relation and the splashback radius with mock simulation analyses. We employ the data catalogs from the ongoing HSC-SSP with the Subaru telescope for optically selected galaxy clusters, weak lensing analyses, and photometric galaxies. We use ~2000 optically selected galaxy clusters from the independent cluster-finding algorithm, called CAMIRA, at a wide cluster redshift range of 0.1
First, we measure stacked weak lensing profiles around the HSC CAMIRA clusters over the wide redshift range. We detect lensing signals around high-redshift clusters at 0.7
Second, we present analyses on the splashback radius of the HSC CAMIRA clusters with the results of the analysis for the mass-richness relation. We detect the splashback feature from the projected cross-correlation measurements between the clusters and photometric galaxies over the wide redshift range, including for high redshift clusters at 0.7
Hence, for the first time, we conclude that the observed splashback radii are consistent with the theoretical predictions based on the ΛCDM model and our massrichness relation from weak lensing effects for the HSC CAMIRA clusters at our precisions over the wide redshift range (~15% for each bin of 0.1
We can improve precisions on measurements of the mass-richness relation and the splashback radius by employing the upcoming full HSC survey data or other future survey data in various wavelengths, including X-ray and radio, in order to study cosmological and astrophysical aspects of galaxy clusters and the Universe itself in more detail. Our observational results with the CAMIRA clusters and our analysis frameworks and methodology for the observational data and mock observations are informative to conduct such analyses with properly accounting for the selection effects in the near future.

この論文で使われている画像

参考文献

Abbott, T. M. C., et al. 2018, Phys. Rev. D, 98, 43526

Adhikari, S., Dalal, N., & Chamberlain, R. 2014, Journal of Cosmology and Astroparticle Physics, 11, 019

Adhikari, S., Dalal, N., & Clampitt, J. 2016, Journal of Cosmology and Astroparticle Physics, 7, 022

Adhikari, S., Sakstein, J., Jain, B., Dalal, N., & Li, B. 2018, Journal of Cosmology and Astroparticle Physics, 11, 033

Adhikari, S., Dalal, N., More, S., & Wetzel, A. 2019, ApJ, 878, 9

Aihara, H., et al. 2018a, PASJ, 70, S4

Aihara, H., et al. 2018b, PASJ, 70, S8

Aihara, H., et al. 2019, PASJ, arXiv:1905.12221

Allen, S. W., Evrard, A. E., & Mantz, A. B. 2011, ARA&A, 49, 409

Balogh, M. L., Morris, S. L., Yee, H. K. C., Carlberg, R. G., & Ellingson, E. 1997, ApJL, 488, 75

Banerjee, A., Adhikari, S., Dalal, N., More, S., & Kravtsov, A. 2019, arXiv:1906.12026

Bartelmann, M., & Schneider, P. 2001, Phys. Rep., 340, 291

Battaglia, N., et al. 2016, Journal of Cosmology and Astroparticle Physics, 8, 013

Baxter, E. J., Rozo, E., Jain, B., Ryko↵, E., & Wechsler, R. H. 2016, MNRAS, 463, 205

Baxter, E., et al. 2017, ApJ, 841, 18

Behroozi, P. S., Wechsler, R. H., & Wu, H.-Y. 2013, ApJ, 762, 109

Bernstein, G. M., & Jarvis, M. 2002, AJ, 123, 583

Bertschinger, E. 1985, ApJS, 58, 39

Bosch, J., et al. 2018, PASJ, 70, S5

Bruzual, G. & Charlot, S. 2003, MNRAS, 344, 1000

Busch, P. & White, S. D. M. 2017, MNRAS, 470, 4767

Chandrasekhar, S. 1943, ApJ, 97, 255

Chang, C., et al. 2018, ApJ, 864, 83

Cohn, J. D., Evrard, A. E., White, M., Croton, D., & Ellingson, E. 2007, MNRAS, 382, 1738

Contigiani, O., Hoekstra, H., & Bah´e, Y. M. 2019, MNRAS, 485, 408

Contigiani, O., Vardanyan, V., & Silvestri, A. 2019, Phys. Rev. D, 99, 4030

Cooray, A. & Sheth, R. 2002, Phys. Rep., 372, 1

Costanzi, M., et al. 2018, arXiv:1810.09456

Costanzi, M., et al. 2019, MNRAS, 482, 490

Dark Energy Survey Collaboration, et al. 2016, MNRAS, 460, 1270

de Jong, J. T. A., et al. 2013, The Messenger, 154, 44

Del Popolo, A. & Le Delliou, M. 2017, Galaxies, 5, 17

Diemer, B. & Kravtsov, A. 2014, ApJ, 789, 1

Diemer, B. 2017, ApJS, 231, 5

Diemer, B., Mansfield, P., Kravtsov, A.,& More, S. 2017, ApJ, 843, 140

Diemer, B. 2018, ApJS, 239, 35

Dietrich, J. P., et al. 2014, MNRAS, 443, 1713

Dressler, A. 1980, ApJ, 236, 351

Dressler, A. & Gunn, J. E. 1983, ApJ, 270, 7

Efron, B. 1982, The Jackknife, the Bootstrap and other resampling plans, Philadelphia: Society for Industrial and Applied Mathematics (SIAM)

Eke, V. R., Cole, S., & Frenk, C. S. 1996, MNRAS, 282, 263

Fang, Y., et al. 2016, MNRAS, 463, 1907

Fillmore, J. A. & Goldreich, P. 1984, ApJ, 281, 1

Flaugher, B. 2005, International Journal of Modern Physics A, 20, 3121

Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. 2013, PASP, 125, 306

Furusawa, H., et al. 2018, PASJ, 70, S3

Freedman, W. L. 2017, Nature Astronomy, 1, 169

Gao, L., et al. 2008, MNRAS, 387, 536

Gladders, M. D. & Yee, H. K. C., 2000, AJ, 120, 2148

Goodman, J. & Weare, J. 2010, Communications in Applied Mathematics and Computational Science, 5,65

G´orski, K. M., Hivon, E., Banday, A. J., Wandelt, B. D., Hansen, F. K., Reinecke, M., & Bartelmann, M. 2005, ApJ, 622, 759

Gunn, J. E. & Gott, J. R. 1972, ApJ, 176, 1

Haiman, Z., Mohr, J. J., & Holder, G. P. 2001, ApJ, 553, 545

Hamabata, A., Oogi, T., Oguri, M., Nishimichi, T., & Nagashima, M. 2019, MNRAS, 488, 4117

Hamana, T. & Mellier, Y. 2001, MNRAS, 327, 169

Hamilton, A. J. S. 2000, MNRAS, 312, 257

Hashimoto, D., Nishizawa, A. J., Shirasaki, M., Macias, O., Horiuchi, S., Tashiro, H., & Oguri, M. 2019, MNRAS, 484, 5256

Hearin, A. P., et al. 2014, MNRAS, 444, 729

Hikage, C., Takada, M., & Spergel, D. N. 2012, MNRAS, 419, 3457

Hikage, C., Mandelbaum, R., Takada, M., & Spergel, D. N. 2013, MNRAS, 435, 2345

Hikage, C. & Oguri, M. 2016, MNRAS, 462, 1359

Hikage, C., et al. 2019, PASJ, 71, 2, 43

Hinshaw, G., et al. 2013, ApJS, 208, 19

Hirata, C. & Seljak, U. 2003, MNRAS, 343, 459

Hoekstra, H., Herbonnet, R., Muzzin, A., Babul, A., Mahdavi, A., Viola, M., & Cacciato, M. 2015, MNRAS, 449, 685

Hsieh, B. C. & Yee, H. K. C. 2014, ApJ, 792, 102

Hu, W. & Kravtsov, A. V. 2003, ApJ, 584, 702

Ilbert, O., et al. 2009, ApJ, 690, 1236

Ivezi´c, Z., et al. 2008, arXiv:0805.2366 ˇ

Jian, H.-Y., et al. 2018, PASJ, 70, S23

Jing, Y. P., Mo, H. J., & B¨orner, G. 1998, ApJ, 494, 1

Johnston, D. E., et al. 2007, arXiv:0709.1159

Kaiser, N., Squires, G., & Broadhurst, T., 1995, ApJ, 449, 460

Kawanomoto, S., Uraguchi, F., Komiyama, Y., et al. 2018, PASJ, 70, 66

Kilbinger, M. 2015, Reports on Progress in Physics, 78, 086901

Kitayama, T., & Suto, Y. 1997, ApJ, 490, 557

Komiyama, Y., et al. 2018, PASJ, 70, S2

Kravtsov, A. V., & Borgani, S. 2012, ARA&A, 50, 353

Kuijken, K., et al. 2015, MNRAS, 454, 3500

Laigle, C., et al. 2016, ApJS, 224, 24

Landy, S. & Szalay, A. 1993, ApJ, 412, 64

Larson, R. B., Tinsley, B. M., & Caldwell, C. N. 1980, ApJ, 237, 692

Laureijs, R., et al. 2011, arXiv:1110.3193

Leauthaud, A., et al. 2010, ApJ, 709, 97

Lewis, A., Challinor, A., & Lasenby, A. 2000, ApJ, 538, 473

Lima, M. & Hu, W. 2005, Phys. Rev. D, 72, 043006

Lin, Y.-T., Mohr, J. J. & Stanford, S. A. 2004, ApJ, 610, 745

Lin, Y.-T., et al. 2017, ApJ, 851, 139

Mandelbaum, R., et al. 2005, MNRAS, 361, 1287

Mandelbaum, R., et al. 2013, MNRAS, 432, 1544

Mandelbaum, R., et al. 2018a, PASJ, 70, S25

Mandelbaum, R. 2018b, ARA&A, 56, 393

Mandelbaum, R., et al. 2018c, MNRAS, 481, 3170

Mansfield, P., Kravtsov, A., & Diemer, B. 2017, ApJ, 841, 34

Mantz, A., Allen, S. W., Rapetti, D., & Ebeling, H. 2010, MNRAS, 406, 1759

Markevitch, M., et al. 2004, ApJ, 606, 819

McClintock, T., et al. 2019, MNRAS, 482, 1352

Medezinski, E., et al. 2018a, PASJ, 70, S28

Medezinski, E., et al. 2018b, PASJ, 70, 2, 30

Melchior, P., et al. 2017, MNRAS, 469, 4899

Miyaoka, K., et al. 2018, PASJ, 70, S22

Miyatake, H., et al. 2019, ApJ, 875, 63

Miyazaki, S., et al. 2012, Proc.SPIE, 8446

Miyazaki, S., Oguri, M., Hamana, T., et al. 2015, ApJ, 807, 22

Miyazaki, S., et al. 2018a, PASJ, 70, S1

More, S., Diemer, B., & Kravtsov, A.,V. 2015, ApJ, 810, 36

More, S., et al. 2016, ApJ, 825, 39

Murata, R., Nishimichi, T., Takada, M., Miyatake, H., Shirasaki, M., More, S., Takahashi, R., & Osato, K. 2018, ApJ, 854, 120

Murata, R., Oguri, M., Nishimichi, T., et al. 2019, PASJ, 71, 107

Murata, R., Sunayama, T., Oguri, M., More, S., Nishizawa, A. J., Nishimichi, T.,& Osato, K. 2020, arXiv:2001.01160

Nakajima, R., Mandelbaum, R., Seljak, U., Cohn, J. D., Reyes, R., & Cool, R. 2012, MNRAS, 420, 3240

Navarro, J. F., Frenk, C. S., & White, S. D. M. 1996, ApJ, 462, 563

Nishimichi, T., et al. 2019, ApJ, 884, 29

Nishizawa, A. J., et al. 2018, PASJ, 70, S24

Norberg, P., et al. 2009, MNRAS, 396, 19

Oemler, A. Jr. 1974, ApJ, 194, 1

Oguri, M., Takada, M., Okabe, N., & Smith, G. P. 2010, MNRAS, 405, 2215

Oguri, M. & Takada, M. 2011, Phys. Rev. D, 83, 023008

Oguri, M. 2014, MNRAS, 444, 147

Oguri, M., et al. 2018a, PASJ, 70, S20

Oguri, M., et al. 2018b, PASJ, 70, S26

Okabe, N., Smith, G. P., Umetsu, K., Takada, M., & Futamase, T. 2013,

Okumura, T., Nishimichi, T., Umetsu, K., & Osato, K. 2018, Phys. Rev. D, 98, 3523

Osato, K., Nishimichi, T., Oguri, M., Takada, M. & Okumura, T. 2018, MNRAS, 477, 2141

Ota, N., et al. 2018, PASJ, arXiv:1802.08692

Peacock, J. A. & Smith, R. E. 2000, MNRAS, 318, 1144

Perlmutter, S., et al. 1999, ApJ, 517, 565

Planck Collaboration, et al. 2016, A&A, 594, 13

Planck Collaboration, et al. 2016, A&A, 594, 24

Poggianti, B. M., et al. 1999, ApJ, 518, 576

Pratt, G. W., et al. 2019, Space Sci. Rev., 215, 25

Renzini, A., 2006, ARA&A, 44, 141

Reyes, R., Mandelbaum, R., Gunn, J. E., Nakajima, R., Seljak, U., & Hirata, C. M. 2012, MNRAS, 425,2610

Riess, A. G., et al. 1998, AJ, 116, 1009

Rowe, B. T. P., et al. 2015, Astronomy and Computing, 10, 121

Rozo, E., et al. 2009, ApJ, 703, 601

Rozo, E., et al. 2010, ApJ, 708, 645

Rozo, E., & Ryko↵, E. S. 2014, ApJ, 783, 80

Rozo, E., Ryko↵, E. S., Bartlett, J. G., & Melin, J.-B. 2015a, MNRAS, 450, 592

Rozo, E., Ryko↵, E. S., Becker, M., Reddick, R. M., & Wechsler, R. H. 2015b, MNRAS, 453, 38

Ryko↵, E. S., et al. 2012, ApJ, 746, 178

Ryko↵, E. S., et al. 2014, ApJ, 785, 104

Ryko↵, E. S., et al. 2016, ApJS, 224, 1

Schneider P., 2006, in Meylan G., Jetzer P., North P., Schneider P., Kochanek C. S., Wambsganss J., eds,

Saas-Fee Advanced Course 33: Gravitational Lensing: Strong, Weak and Micro. pp 1–89

Scoccimarro, R., Sheth, R. K., Hui, L., & Jain, B. 2001, ApJ, 546, 20

Seljak, U. 2000, MNRAS, 318, 203

Sheldon, E. S., et al. 2004, AJ, 127, 2544

Shi, X. 2016, MNRAS, 459, 3711

Shin, T., et al. 2019, MNRAS, 487, 2900

Shirasaki, M. & Yoshida, N. 2014, ApJ, 786, 43

Shirasaki, M., Hamana, T., & Yoshida, N. 2015, MNRAS, 453, 3043

Shirasaki, M., Takada, M., Miyatake, H., Takahashi, R., Hamana, T., Nishimichi, T., & Murata, R. 2017, MNRAS, 470, 3476

Shirasaki, M., & Takada, M. 2018, MNRAS, 478, 4277

Shirasaki, M., Hamana, T., Takada, M., Takahashi, R., & Miyatake, H. 2019, MNRAS, 486, 52

Simet, M., McClintock, T., Mandelbaum, R., Rozo, E., Ryko↵, E., Sheldon, E., Wechsler, R. H. 2017, MNRAS, 466, 3103

Singh, S., Mandelbaum, R., Seljak, U., Slosar, A., & Vazquez Gonzalez, J. 2017, MNRAS, 471, 3827

Smith, R. E., et al. 2003, MNRAS, 341, 1311

Speagle, J. S., et al. 2019, arXiv:1906.05876

Spergel, D., et al., 2015, arXiv:1503.03757

Springel, V., et al. 2005, Nature, 435, 629

Stanford, S. A., Eisenhardt, P. R., & Dickinson, M. 1998, ApJ, 492, 461

Sugiura, H., Nishimichi, T., Rasera, Y., & Taruya, A. 2019, arXiv:1911.05394

Sunayama, T. & More, S. 2019, MNRAS, 490, 4945

Takada, M., & Bridle, S. 2007, New Journal of Physics, 9, 446

Takada, M., & Hu, W. 2013, Phys. Rev. D, 87, 123504

Takahashi, R., Sato, M., Nishimichi, T., Taruya, A., & Oguri, M. 2012, ApJ, 761, 152

Takahashi, R., Hamana, T., Shirasaki, M., Namikawa, T., Nishimichi, T., Osato, K., & Shiroyama, K. 2017, ApJ, 850, 24

Takahashi, R., Nishimichi, T., Takada, M., Shirasaki, M., & Shiroyama, K. 2018, MNRAS, 482, 4253

Tanaka, M., et al. 2018, PASJ, 70, S9

Tinker, J. L., Robertson, B. E., Kravtsov, A. V., Klypin, A., Warren, M. S., Yepes, G., & Gottl¨ober, S.2010, ApJ, 724, 878

Umetsu, K., Broadhurst, T., Zitrin, A., Medezinski, E., Coe, D., & Postman, M. 2001, ApJ, 738, 41

Umetsu, K. & Diemer, B. 2017, ApJ, 836, 231

Vikhlinin, A., et al. 2009, ApJ, 692, 1060

Vogelsberger, M., Marinacci, F., Torrey, P., & Puchwein, E. 2019, arXiv:1909.07976

Voit, G. M. 2005, Reviews of Modern Physics, 77, 207

von der Linden, A. et al. 2014, MNRAS, 443, 1973

Walker, S., et al. 2019, Space Sci. Rev., 215, 7

Wechsler, R. H., & Tinker, J. L. 2018, ARA&A, 56, 435

Weinberg, D. H., Mortonson, M. J., Eisenstein, D. J., Hirata, C., Riess, A. G., & Rozo, E. 2013, Phys. Rep.,530, 87

Wetzel, A. R., Tinker, J. L., Conroy, C., & van den Bosch, F. C. 2013, MNRAS, 432, 336

White, S. D. M., Efstathiou, G., & Frenk, C. S. 1993, MNRAS, 262, 1023

Wong, K. C., et al. 2019, arXiv:1907.04869

Xhakaj, E., et al. 2019, arXiv:1911.09295

Zhang, Y., et al. 2019, MNRAS, 487, 2578

Zheng, Z., et al. 2005, ApJ, 633, 791

Zinger, E., Dekel, A., Kravtsov, A. V., & Nagai, D. 2018, MNRAS, 475, 3654

Zu, Y., Weinberg, D. H., Rozo, E., Sheldon, E S., Tinker, J. L., & Becker, M. R. 2014, MNRAS, 439, 1628

Zu, Y., Mandelbaum, R., Simet, M., Rozo, E., & Ryko↵, E. S. 2017, MNRAS, 470, 551

Z¨urcher, D. & More, S. 2019, ApJ, 874, 184

Zwicky, F. 1933, Helvetica Physica Acta, 6, 110

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る