リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Downregulated ATP6V1B1 expression acidifies the intracellular environment of cancer cells leading to resistance to antibody-dependent cellular cytotoxicity」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Downregulated ATP6V1B1 expression acidifies the intracellular environment of cancer cells leading to resistance to antibody-dependent cellular cytotoxicity

Nishie, Mariko 京都大学 DOI:10.14989/doctor.k22887

2021.01.25

概要

Among several mechanisms for the resistance of human epidermal growth factor receptor 2- overexpressing (HER2+) cancer cells to trastuzumab, little is known regarding the mechanism underlying the resistance to trastuzumab-mediated antibody-dependent cellular cytotoxicity (ADCC). Cell death due to ADCC is caused by apoptosis of target cells induced by granzymes released from natural killer cells. Because optimal granzyme physiological activity occurs at neutral pH, we assumed that the pH of the intracellular environment influences the cytotoxic effects of granzymes. We established ADCC-resistant cells and compared them with wild-type cells in terms of the expression of intracellular pH-regulating genes. The expression of ATP6V1B1, which encodes a component of vacuolar ATPases, was downregulated in the ADCC-resistant cells. Thus, to functionally characterize ATP6V1B1, we used a CRISPR/Cas9 system to generate ATP6V1B1- knockout SKBR3 and JIMT-1 cells (both HER2+ human breast cancer cell line). The resulting cells exhibited significantly less ADCC than the control SKBR3 and JIMT-1 cells. The intracellular pH of the ATP6V1B1-knockout SKBR3 and JIMT-1 cells was significantly lower than control SKBR3 and JIMT-1cells. An analysis of granzyme dynamics during the ADCC reaction in cancer cells revealed that granzymes degraded intracellularly in the control SKBR3 and JIMT-1 cells and accumulated in ATP6V1B1-knockout cells, but were not cytotoxic. These findings suggest that decreased vacuolar ATPase activity alters the cytoplasmic pH of cancer cells to create an environment that is less suitable for granzyme bioactivity, which adversely affects the induction of apoptosis of cancer cells by NK cells.

参考文献

1 Slamon, D. J. et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. The New England journal of medicine 344, 783-792, doi:10.1056/NEJM200103153441101 (2001).

2 D Cameron, MJ Piccart-Gebhart, RD Gelber, et al.11 years' follow-up of trastuzumab after adjuvant chemotherapy in HER2-positive early breast cancer: final analysis of the HERceptin Adjuvant (HERA) trial. Lancet, 389 (2017), pp. 1195-1205

3 Harari, D. & Yarden, Y. Molecular mechanisms underlying ErbB2/HER2 action in breast cancer. Oncogene 19, 6102-6114, doi:10.1038/sj.onc.1203973 (2000).

4 Saez, R. et al. p95HER-2 predicts worse outcome in patients with HER-2-positive breast cancer. Clin Cancer Res 12, 424-431, doi:10.1158/1078-0432.CCR-05-1807 (2006).

5 Scaltriti, M. et al. Expression of p95HER2, a truncated form of the HER2 receptor, and response to anti-HER2 therapies in breast cancer. Journal of the National Cancer Institute 99, 628-638, doi:10.1093/jnci/djk134 (2007)

6 Nagy, P. et al. Decreased accessibility and lack of activation of ErbB2 in JIMT-1, a herceptinresistant, MUC4-expressing breast cancer cell line. Cancer Res 65, 473-482 (2005).

7 Wang, Y. et al. Inhibition of insulin-like growth factor-I receptor (IGF-IR) signaling and tumor cell growth by a fully human neutralizing anti-IGF-IR antibody. Mol Cancer Ther 4, 1214-1221, doi:10.1158/1535-7163.MCT-05-0048 (2005).

8 Nagata, Y. et al. PTEN activation contributes to tumor inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients. Cancer Cell 6, 117-127, doi:10.1016/j.ccr.2004.06.022

9 Clynes RA, Towers TL, Presta LG, Ravetch JV. Inhibitory Fc receptors modulate in vivo cytotoxicity against tumor targets. Nature medicine 2000;6:443-6

10 Florian Reim, et al. Immunoselection of Breast and Ovarian Cancer Cells with Trastuzumab and Natural Killer Cells: Selective Escape of CD44high/CD24low/HER2low Breast Cance Stem Cells. Cancer Res 2009; doi: 10.1158/0008-5472.CAN-09-0834

11 Scaltriti M, et al. Lapatinib, a HER2 tyrosine kinase inhibitor, induces stabilization and accumulation of HER2 and potentiates trastuzumab-dependent cell cytotoxicity. Oncogene 2009; doi: 10.1038/onc.2008.432.

12 Roca L, et al. Correlation of HER2, FCGR2A, and FCGR3A gene polymorphisms with trastuzumab related cardiac toxicity and efficacy in a subgroup of patients from UNICANCER- PACS 04 trial. Breast Cancer Res Treat. 2013 Jun;139(3):789-800. doi: 10.1007/s10549-013-2587- x.

13 Tamura, K. et al. FcγR2A and 3A polymorphisms predict clinical outcome of trastuzumab in both neoadjuvant and metastatic settings in patients with HER2-positive breast cancer. Ann. Oncol.22, 1302–1307 (2011).

14 Thiery, J. et al. Perforin pores in the endosomal membrane trigger the release of endocytosed granzyme B into the cytosol of target cells. Nature immunology 12, 770-777, doi:10.1038/ni.2050 (2011).

15 Henkart, P. A., Berrebi, G. A., Takayama, H., Munger, W. E. & Sitkovsky, M. V. Biochemical and functional properties of serine esterases in acidic cytoplasmic granules of cytotoxic T lymphocytes. J Immunol 139, 2398-2405 (1987).

16 Breton, S. & Brown, D. Regulation of luminal acidification by the V-ATPase. Physiology (Bethesda) 28, 318-329, doi:10.1152/physiol.00007.2013 (2013).

17 Jalimarada, S. S., Ogando, D. G., Vithana, E. N. & Bonanno, J. A. Ion transport function of SLC4A11 in corneal endothelium. Invest Ophthalmol Vis Sci 54, 4330-4340, doi:10.1167/iovs.13- 11929 (2013).

18 Rousalova I, Krepela E. Granzyme B-induced apoptosis in cancer cells and its regulation (review). Int J Oncol 2010;37:1361-78

19 Adrain C, Murphy BM, Martin SJ. Molecular ordering of the caspase activation cascade initiated by the cytotoxic T lymphocyte/natural killer (CTL/NK) protease granzyme B. The Journal of biological chemistry 2005;280:4663-73

20 Martinvalet D, Dykxhoorn DM, Ferrini R, Lieberman J. Granzyme A cleaves a mitochondrial complex I protein to initiate caspase-independent cell death. Cell 2008;133:681-92

21 Toei, M., Saum, R. & Forgac, M. Regulation and isoform function of the VATPases. Biochemistry 49, 4715–4723 (2010).

22 Arai, S. et al. Rotation mechanism of Enterococcus hirae V1-ATPase based on asymmetric crystal structures. Nature 493, 703-707, doi:10.1038/nature11778 (2013).

23 van Hille, B. et al. Heterogeneity of vacuolar H(+)-ATPase: differential expression of two human subunit B isoforms. Biochem J 303 ( Pt 1), 191-198 (1994).

24 Casey, J. R., Grinstein, S. & Orlowski, J. Sensors and regulators of intracellular pH. Nat Rev Mol Cell Biol 11, 50-61, doi:10.1038/nrm2820 (2010)

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る