リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「テンサイ根圏における細菌群集の多様性と植物生育促進細菌に関する研究」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

テンサイ根圏における細菌群集の多様性と植物生育促進細菌に関する研究

岡崎, 和之 東北大学

2023.09.25

概要

近 年 の 次 世 代 シ ー ケ ン サ ー( NGS) な ど の 培 養 を 伴 わ な い 解 析 手 法 の 進 歩 によ り 、 こ れ ま で
ブラックボックスであった植物共生微生物の群集構造とその動態の解明が大きく進展するに
つれ 、宿 主 植 物 や微 生 物、環境 に関 連 する 様 々な 要因 が、植物 共 生微 生 物の 群種 構 造 や 多 様性
に影 響 を与 える こ とが 明 らか とな っ てき て いる( Dastogeer et al., 2020; Hara et al. , 2019;
Ikeda et al. , 2014; Masuda et al. , 2016; Unno et al ., 2015)。 この た め、 実 用的な PGPB
の選 抜 のた めに は 、環 境 が安 定し た 実験 室 では な く、実 際の 圃場 で 栽培 中 の植 物 組 織 に安 定 し
て定 着 でき る能 力 を評 価 する こと が 重要 と 考え られ る 。根 圏土 壌 を対 象 とし た微 生 物群 集 の季
節変 動 を観 察し た 報告 事 例は 比較 的 多数 存 在す る( Bell et al ., 2015; Chaparro et al. ,
2014; Shi et al ., 2015; Smalla et al ., 2001)。し か しな がら 、 植物 の 生育 ステ ー ジが 根 の
共生 微 生物 群集 に 与え る 影響 を圃 場 条件 下 で時 系列 的 に解 析す る こと は 、よ り多 く の手 間 とコ
スト を 要す るた め 比較 的 少数 の 事 例 に限 ら れて いる (Houlden et al ., 2008; Emmett et al .,
2020)。
テ ン サ イ の 根 系 組 織 は 大 き く主 根 と 側 根 に 分 け る こ と が で き る 。 主 根 が 主 に植 物 体 を 支 え 、
肥大 し てシ ョ糖 の 貯蔵 器 官と して 機 能す る のに 対し 、側根 は土 壌 から の 養分 と水 分 の吸 収 を担
う。 こ のた め、 側 根は 土 壌か らテ ン サイ へ の養 分吸 収 を促 進す る PGPB が活 動す る 重要 な 場と
考え ら れ る 。分 子 微生 物 生態 学的 手 法 に よ るテ ン サイ 根 圏を 対象 に した 微 生物 群集 の 解析 に つ
いて は 、根 圏土 壌 (Hudz and Skivka 2021; Mendes et al., 2011) や 主根 (Shi et al ., 2014;
Tsurumaru et al., 2015)を 対象 に した 報 告は あ るも の の、 側根 を 対象 に した 報告 は ほと ん ど
ない 。ま た、DGGE 法 を用 いた 研 究で は、側 根も 含 む根 の 表皮 にお け る共 生 微生 物群 集 の多 様 性
が生 育 ステ ージ に より 影 響を 受け る こと が 報告 され て いる が( Houlden et al., 2008)、 群集
構造 の 詳細 な変 動 につ い ては 明ら か とな っ てい ない 。
本研 究 の目 的は 、 圃場 条 件下 で 安 定 した 効 果が 期待 で きる 実用 的 な PGPB 候 補菌 株 の効 率 的
な選 抜 にお ける 分 子微 生 物生 態学 的 解析 手 法 の 活用 の 有用 性の 検 証で あ り、その た めに は 圃場
条件下でテンサイの各生育ステージにおける共生微生物群集の動態を理解することが重要で
ある 。 そこ で本 章 では 、NGS 解析 に より 、 テン サ イの 生 育ス テー ジ が側 根 の共 生細 菌 の群 集 構
造に 及 ぼす 影響 を 明ら か にす る。 ...

この論文で使われている画像

参考文献

Ahmad, F., Ahmad, I., and Khan, M. S. (2008) Screening of free -living rhizospheric

bacteria for their multiple plant growth promoting activities. Microbiol Res 163:

173–181.

Amann, R. I., Ludwig, W., and Schleifer, K. H. (1995) Phylogenetic identification

and

in

situ

detection

of

individual

microbial

cells

without

cultivation.

Microbiological reviews 59.1: 143-169.

Ambreetha,

S.,

and

Balachandar,

D.

(2023)

SCAR

marker:

potential

tool

for

authentication of agriculturally important microorganisms. J Basic Microbiol

63.1: 4-16.

Anda, M., Ikeda, S., Eda, S., Okubo, T., Sato, S., Tabata, S. , et al. (2011) Isolation

and genetic characterization of Aurantimonas and Methylobacterium strains from

stems of hypernodulated soybeans. Microbes Environ 26.2: 172-180.

Andersen, J. B., Koch, B., Nielsen, T. H., Sørensen , D., Hansen, M., Nybroe, O., et

al . (2003) Surface motility in Pseudomonas sp. DSS73 is required for efficient

biological containment of the root -pathogenic microfungi Rhizoctonia solani and

Pythium ultimum . Microbiology 149.1: 37-46.

Anguita-Maeso, M., Olivares-García, C., Haro, C., Imperial, J., Navas-Cortés, J. A.,

and

Landa,

B.

B.

(2020)

Culture -dependent

and

culture-independent

characterization of the olive xylem microbiota: effect of sap extraction methods.

Front Plant Sci 10: 1708.

Antoun, H., Beauchamp, C.J., Goussard, N., Chabot, R., and Lalande, R. (1998)

Potential of Rhizobium and Bradyrhizobium species as plant growth promoting

rhizobacteria on non-legumes: effect on radishes ( Raphanus sativus L.). In

Molecular microbial ecology of the soil . Springer, Dordrecht, pp. 57–67.

Asaf, S., Khan, M. A., Khan, A. L., Waqas, M., Shahzad, R., Kim, A. Y., et al. (2017)

Bacterial endophytes from arid land plants regulate endogenous hormone content

and promote growth in crop plants: an example of Sphingomonas sp. and Serratia

marcescens . J Plant Interact 12.1: 31-38.

106

Ashelford, K. E., Chuzhanova, N. A., Fry, J. C., Jones, A. J., and Weightman, A. J.

(2006) New screening software shows that most recent large 16S rRNA gene clone

libraries contain chimeras. Appl Environ Microbiol 72: 5734–5741.

Bal, H. B., Nayak, L., Das, S., and Adhya, T. K. (2013) Isolation of ACC deaminase

producing PGPR from rice rhizosphere and evaluating their plant growth promoting

activity under salt stress. Plant Soil 366: 93–105.

Bandeppa, S., Phule, A. S., Rajani, G., Babu, K. V., Barbadikar, K. M., Babu, M. B.

B., et al. (2022). Effect of nitrogen-fixing bacteria on germination, seedling

vigour and growth of two rice ( Oryza sativa L.) cultivars. Int j plant soil sci

34.16: 94-106.

Barazani, O. Z., and Friedman, J. (1999) Is IAA the major root growth factor secreted

from plant-growth-mediating bacteria? J Chem Ecol 25: 2397–2406.

Bell, C. W., Asao, S., Calderon, F., Wolk, B., and Wallenstein, M. D. (2015) Plant

nitrogen uptake drives rhizosphere bacterial community assembly during plant

growth. Soil Biol Biochem 85: 170-182.

Berrios, L., and Ely, B. (2020) Plant growth enhancement is not a conserved feature

in the Caulobacter genus. Plant and Soil 449: 81-95.

Bertoldo, G., Della Lucia, M. C., Squartini, A., Concheri, G., Broccanello, C.,

Romano, A., et al . (2021) Endophytic microbiome responses to sulfur availability

in Beta vulgaris (L.). Int J Mol Sci 22.13: 7184.

Bodenhausen, N., Horton, M. W., and Bergelson, J. (20 13) Bacterial communities

associated with the leaves and the roots of Arabidopsis thaliana . PloS One 8:

e56329.

Bolyen, E., Rideout, J.R., Dillon, M.R., Bokulich, N.A., Abnet, C.C., Al -Ghalith,

G.A., et al . (2019) Reproducible, interactive, scalable and extensible microbiome

data science using QIIME 2. Nat Biotechnol 37: 852–857.

Broccanello, C., Ravi, S., Deb, S., Bolton, M., Secor, G., Richards, C., et al .

(2022). Bacterial endophytes as indicators of susceptibility to Cercospora Leaf

Spot (CLS) disease in Beta vulgaris L. Sci Rep 12.1: 10719.

Buyer, J. S. (1995) A soil and rhizosphere microorganism isolation and enumeration

107

medium that inhibits Bacillus mycoides . Appl Environ Microbiol 61.5: 1839-1842.

Çakmakçi, R., Kantar, F., and Algur, Ö. F. (1999) Sugar beet and barley yields in

relation

to

Bacillus

polymyxa

and

Bacillus

megaterium

var.

phosphaticum

inoculation. J Plant Nutr Soil Sci 162: 437–442.

Çakmakçi

R.,

Kantar,

F.,

and

Sahin,

F.

(2001)

Effect

of

N 2 -fixing

bacterial

inoculations on yield of sugar beet and barley. J Plant Nutr Soil Sci 164: 527–

531.

Çakmakçi, R., Dönmez, F., Aydın, A., and Şahin, F. (2006) Growth promotion of plants

by plant growth-promoting rhizobacteria under greenhouse and two diff erent field

soil conditions. Soil Biol Biochem 38: 1482–1487.

Caporaso, J.G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F.D., Costello,

E.K., et al . (2010) QIIME allows analysis of high -throughput community sequencing

data. Nat Methods 7: 335–336.

Caporaso J.G., Lauber, C.L., Walters, W.A., Berg-Lyons, D., Lozupone, C.A., Turnbaugh,

P.J., et al . (2011) Global patterns of 16S rRNA diversity at a depth of millions

of sequences per sample. Proc Natl Acad Sci USA 108 Suppl 1: 4516–4522.

Cardinale, M., Ratering, S., Suarez, C., Montoya, A. M. Z., Geissler -Plaum, R., and

Schnell, S. (2015). Paradox of plant growth promotion potential of rhizobacteria

and their actual promotion effect on growth of barley ( Hordeum vulgare L.) under

salt stress. Microbiological research 181: 22–32.

Chaparro, J. M., Badri, D. V., and Vivanco, J. M. (2014) Rhizosphere microbiome

assemblage is affected by plant development. ISME J 8.4: 790-803.

Chhetri, G., Kim, I., Kang, M., Kim, J., So, Y., and Seo, T. (2022) Devosia rhizoryzae

sp. nov., and Devosia oryziradicis sp. nov., novel plant growth promoting members

of the genus Devosia , isolated from the rhizosphere of rice plants. J Microbiol

60: 1–10.

Choudhary, D. K., Kasotia, A., Jain, S., Vaishnav, A., Kumari, S., Sharma, K. P., et

al . (2016) Bacterial-mediated tolerance and resistance to plants under abiotic

and biotic stresses. J Plant Growth Regul 35: 276-300.

Cole, J. R., Wang, Q., Fish, J. A., Chai, B., McGarrell, D. M., Sun, Y., et al . (2014)

108

Ribosomal Database Project: data and tools for high throughput rRNA analysis.

Nucleic Acids Res 42: D633–D642.

Compant, S., Clément C., and Sessitsch, A. (2010) Plant gr owth-promoting bacteria in

the rhizo- and endosphere of plants: their role, colonization, mechanisms involved

and prospects for utilization. Soil Biol Biochem 42: 669–678.

Coombs, J. T., Michelsen, P. P., and Franco, C. M. (2004) Evaluation of endophytic

actinobacteria as antagonists of Gaeumannomyces graminis var. tritici in wheat.

Biol Control 29.3: 359-366.

Dastogeer, K. M., Tumpa, F. H., Sultana, A., Akter, M. A., and Chakraborty, A. (2020)

Plant microbiome–an account of the factors that shape community composition and

diversity. Curr Plant Biol 23: 100161.

de Boer, W., Wagenaar, A.M., Klein Gunnewiek, P.J., and van Veen, J.A. (2007) In

vitro suppression of fungi caused by combinations of apparently non -antagonistic

soil bacteria. FEMS Microbiol Ecol 59: 177–185.

Della Lucia, M. C., Bertoldo, G., Broccanello, C., Maretto, L., Ravi, S., Marinello,

F., et al . (2021) Novel effects of leonardite-based applications on sugar beet.

Front. Plant Sci 12: 646025.

Delmotte, N., Knief, C., Chaffron, S., Innerebner, G., Roschitzki, B., Schlapbach,

R., e t al. (2009) Community proteogenomics reveals insights into the physiology

of phyllosphere bacteria. Proc Natl Acad Sci USA 106: 16428–16433.

Dias, A. C., Costa, F. E., Andreote, F. D., Lacava, P. T., Teixeira, M. A., Assumpção,

L. C., Araújo, W. L., Azevedo, J. L., and Melo, I. S. (2009) Isolation of

micropropagated strawberry endophytic bacteria and assessment of their potential

for plant growth promotion. World J Microbiol 25: 189-195.

Duca, D. R., and Glick, B. R. (2020) Indole-3-acetic acid biosynthesis and its

regulation in plant-associated bacteria. Appl Microbiol Biotechnol 104: 86078619.

Dunne, C., Moënne-Loccoz, Y., McCarthy, J., Higgins, P., Powell, J., Dowling, D. N.,

and O'gara, F. (1998) Combining proteolytic and phloroglucinol -producing bacteria

for improved biocontrol of Pythium -mediated damping-off of sugar beet. Plant

109

Pathol 47: 299–307.

Doumbou, C. L., Hamby Salove, M. K., Crawford, D. L., and Beaulieu, C. (2001)

Actinomycetes , promising tools to control plant diseases and to promote plant

growth. Phytoprotection 82: 85–102.

Emmett, B. D., Buckley, D. H., and Drinkwater, L. E. (2020) Plant growth rate and

nitrogen uptake shape rhizosphe re bacterial community composition and activity

in an agricultural field. New Phytol 225.2: 960-973.

Felsenstein, J. (1985) Confidence limits on phylogenies: an approach using the

bootstrap. Evolution 39: 783–791.

FAOSTAT (2022) Available online at: https://www.fao.org/faostat/en/#data (accessed

June 24, 2022).

Fierer, N., Bradford, M.

A.,

and

Jackson, R.

B. (2007) Toward an ecological

classification of soil bacteria. Ecology 88: 1354–1364.

Francis, I. M., Jochimsen, K. N., de Vos, P., and van Bruggen, A. H. (2014)

Reclassification of rhizosphere bacteria including strains causing corky root of

lettuce

and

proposal

of

Rhizorhapis

suberifaciens

gen.

nov.,

comb.

nov.,

Sphingobium mellinum sp. nov., Sphingobium xanthum sp. nov. and Rhizorhabdus

argentea gen. nov., sp. nov. Int J Syst Evol Microbiol 64: 1340–1350.

笛木 伸 彦 . (2011) て ん菜 の適 正 施肥 管 理に よる コス ト 削減 . 北 農 78: 133-138.

藤田 直 聡、 辻博 之 、有 岡 敏也 . (2020) 稼 働費 用 の比 較 から 見た て ん菜 新 技術 の導 入 に必 要 な

作業 面 積─ ロボ ッ ト 6 畦狭 畦用 短 紙筒 移 植機 およ び 高効 率大 型 6 畦 狭畦 収穫 機 を対 象

に─ . 農研 機構 研 究報 告 3: 9-17.

Garrido-Oter, R., Nakano, R. T., Dombrowski, N., Ma, K. W., Team, T. A., McHardy A.

C., et al. (2018) Modular traits of the Rhizobiales root microbiota and their

evolutionary relationship with symbiotic rhizobia. Cell Host Microbe 24: 155–167.

Glick, B. R. (2005) Modulation of plant ethylene levels by the bacterial enzyme ACC

deaminase. FEMS Microbiol 251.1: 1-7.

Gupta, S., Meena, M. K., and Datta, S. (2014) Isolation, characterization of plant

growth promoting bacteria from the plant Chlorophytum borivilianum and in-vitro

screening for activity of nitrogen fixation, phosphate solubilization and IAA

110

production. Int J Curr Microbiol Appl Sci 3: 1082–1090.

Hattori, T., and Hattori, R. (2000) The plate count method. An attempt to delineate

the bacterial life in the microhabitat of soil. Soil Biol Biochem 10: 271-302.

Hattori, T., Mitsui, H., Haga, H., Wakao, N., Shikano, S., Gorlach, K., et al . (1997)

Advances in soil microbial ecology and the biodiversity. Antonie van Leeuwenhoek

72: 21-28.

Hara

S,

Matsuda

M,

and

Minamisawa

K.

(2019)

Growth

stage-dependent

bacterial

communities in soybean plant tissues: Methylorubrum transiently dominated in the

flowering stage of soybean shoot. Microbes Environ 34: 446–450.

Harbison, A. B., Carson, M. A., Lamit, L. J., Basiliko, N., and Bräuer, S.L. (2016)

A novel isolate and widespread abundance of the candidate alphaproteobacterial

order ( Ellin 329 ), in southern Appalachian peatlands. FEMS Microbiol Lett 363:

fnw151.

平石 明 . (2016) 環 境微 生 物の 培養 性 とそ の 生態 学的 意 義 . 日 本微 生 物資 源 学会 誌 32.1: 111.

北海 道 農政 部. (2011) 北 海道 の てん 菜 生産 の現 状に つ いて . 特 産 種苗 12: 6-8.

北海 道 農産 協会 . (2021) てん 菜 糖業 年鑑 2021 年版 . 北海 道農 産 協会 : 137-245.

北海 道 立十 勝農 業 試験 場 . (2004) て ん 菜直 播栽 培マ ニ ュア ル 2004. 北海 道て ん 菜協 会

Houlden, A., Timms-Wilson, T. M., Day, M. J., and Bailey, M. J. (2008) Influence of

plant developmental stage on microbial community structure and activity in the

rhizosphere of three field crops. FEMS Microbiol Ecol 65: 193–201.

Hudz, S. O., and Skivka, L. M. (2021) Formation of the eubacterial complex in the

ryosphere of sugar beet ( Beta vulgaris ) under different fertilization systems.

Biotechnol Acta 14: 81–86.

池田 成 志 . (2016) 土 壌 微生 物が 創 る共 生 の世 界 ―そ の 先端 的研 究 事例 と 農業 への 応 用的 研 究

展開 5. 作 物圏 共 生微 生 物の 生態 研 究の 現 状と 農業・食品 産業 へ の応 用 の可 能性 . 日本 土

壌肥 料 学雑 誌 87.5: 373-382.

Ikeda, S., Kaneko, T., Okubo, T., Rallos, L. E., Eda, S., Mitsui, H., et al . (2009)

Development of a bacterial cell enrichment method and its application to the

community analysis in soybean stems. Microb Ecol 58: 703–714.

111

Ikeda, S., Suzuki, K., Kawahara, M., Noshiro, M., and Takahashi, N. (2014) An

assessment

of

urea-formaldehyde

fertilizer

on

the

diversity

of

bacterial

communities in onion and sugar beet. Microbes Environ 29.2: 231-234.

Ikeda, S., Watanabe, K., Minamisawa, K., and Ytow, N. (2004) Evaluati on of soil DNA

from arable land in Japan using a modified direct -extraction method. Microbes

Environ 19: 301–309.

池谷 聡 . (2019) 近 年 のテ ンサ イ 品種 に おけ る直 播栽 培 適性 につ い ての 考 察. て ん 菜研 究会 報

60: 28-31.

İnceoğlu, Ö., Salles, J. F., van Overbeek, L., and van Elsas, J. D. (2010) Effects

of plant genotype

and growth

stage on

the

betaproteobacterial

communities

associated with different potato cultivars in two fields. Appl Environ Microbiol

76.11: 3675-3684.

Innerebner, G., Knief, C., and Vorholt, J. A. (2011) Protection of Arabidopsis

thaliana against leaf-pathogenic Pseudomonas syringae by Sphingomonas strains in

a controlled model system. Appl Environ Microbiol 77.10: 3202-3210.

Ishizawa, H., Kuroda, M., Morikawa, M., and Ike, M. (2017) Differential oxidative

and

antioxidative

response

of

duckweed

Lemna

minor

toward

plant

growth

promoting/inhibiting bacteria. Plant Physiol Biochem 118: 667-673.

Janvier, C., Villeneuve, F., Alabouvette, C., Edel -Hermann, V., Mateille, T., and

Steinberg, C. (2007) Soil health through soil disease suppression: which strategy

from descriptors to indicators? Soil Biol Biochem 39.1: 1-23.

Jou, Y. T., Tarigan, E. J., Prayogo, C., Kobua, C. K., Weng, Y. T., and Wang, Y. M.

(2022) Effects of Sphingobium yanoikuyae SJTF8 on rice (Oryza sativa ) seed

germination and root development. Agriculture 12.11: 1890.

Kemp, P. F., and Aller, J. Y. (2004) Bacterial diversity in aquatic and other

environments: what 16S rDNA libraries can tell us. FEMS Microbiol Ecol 47: 161–

177.

Kertesz, M. A., Fellows, E., and Schmalenberger, A. (2007) Rhizobacteria and plant

sulfur supply. Adv Appl Microbiol 62: 235-268.

Khorassani, R., Hettwer, U., Ratzinger, A., Steingrobe, B., Karlovsky, P., and

112

Claassen, N. (2011) Citramalic acid and salicylic acid in sugar beet root exudates

solubilize soil phosphorus. BMC Plant Biol 11.1: 1-8.

Kim, S. J., Ahn, J. H., Weon, H. Y., Hong, S. B., Seok, S. J., Kim, J. S., and Kwon,

S. W. (2015) Niastella gongjuensis sp. nov., isolated from greenhouse soil. Int

J Syst Evol Microbiol 65: 3115–3118.

Kloepper, J. W., Leong, J., Teintze, M., and Schroth, M. N . (1980) Enhanced plant

growth by siderophores produced by plant growth -promoting rhizobacteria. Nature

286: 885–886.

小谷 野 仁 (2012) α多 様 性の 測定 と 確率 文 字列 の理 論 . 数 理統 計 60.2: 26-278.

Kumar, P., Dubey, R. C., and Maheshwari, D. K. (2012) Bacillus strains isolated from

rhizosphere showed plant growth promoting and antagonistic activity against

phytopathogens. Microbiol Res 167: 493–499.

Kusstatscher, P., Cernava, T., Harms, K., Maier, J., Eigner, H., Berg, G., and Zachow,

C. (2019) Disease incidence in sugar beet fields is correlated with microbial

diversity and distinct biological markers. Phytobiomes J 3.1: 22-30.

Li, F., Chen, L., Zhang, J., Yin, J., and Huang, S. (2017) Bacterial community

structure after long-term organic and inorganic fertilization reveals important

associations between soil nutrients and specific taxa involved in nutrient

transformations. Front Microbiol 8; 187.

Lilley, A. K., Fry, J. C., Bailey, M. J., and Day, M. J. (1996) Comparison of aerobic

heterotrophic taxa isolated from four root domains of mature sugar beet (Beta

vulgaris ). FEMS Microbiol 21.3: 231-242.

Lozupone, C., Hamady, M., and Kni ght, R. (2006) UniFrac–an online tool for comparing

microbial community diversity in a phylogenetic context. BMC Bioinf 7: 371.

Lugtenberg, B., and Kamilova, F. (2009) Plant-growth-promoting rhizobacteria. Annu

Rev Microbiol 63: 541–556.

Luo, D., Langendries, S., Mendez, S. G., De Ryck, J., Liu, D., Beirinckx, S., et al .

(2019) Plant growth promotion driven by a novel Caulobacter strain. MPMI 32.9:

1162-1174.

Luo, Y., Wang, F., Huang, Y., Zhou, M., Gao, J., Yan, T., Sheng, H., and An, L. (2019)

113

Sphingomonas sp. Cra20 increases plant growth rate and alters rhizosphere

microbial community structure of Arabidopsis thaliana under drought stress. Front

Microbiol 10: 1221.

Magoc, T., and Salzberg, S. L. (2011) FLASH: fast length adjustment of short reads

to improve genome assemblies. Bioinformatics 27: 2957–2963.

Mastný, J., Bárta, J., Kaštovská, E., and Picek, T. (2020) Root exudate input

stimulates

peatland

recalcitrant

DOC

decomposition

by

r -strategic

taxa

of

Gammaproteobacteria and Bacteroidetes .

Masuda, S., Bao, Z., Okubo, T., Sasaki, K., Ikeda, S., Shinoda, R., et al . (2016)

Sulfur fertilization changes t he community structure of rice root -, and soilassociated bacteria. Microbes Environ 31: 70–75.

増岡 弘 晃、 高安 伶 奈、 木 口悠 也、 関 家紗 愛 、須 田亙 . (2022) 腸 内マ イ クロ バイ オ ーム 解 析の

最新 手 法. 腸内 細 菌学 雑 誌 36.3: 149-158.

Medina, D., Walke, J. B., Gajewski, Z., Becker, M. H., Swartwout, M. C., and Belden,

L. K. (2017) Culture media and individual hosts affect the recovery of culturable

bacterial diversity from amphibian skin. Front Microbiol 8: 1574.

Meena, K. K., Bitla, U. M., Sorty, A. M. , Singh, D. P., Gupta, V. K., Wakchaure, G.

C., and Kumar, S. (2020) Mitigation of salinity stress in wheat seedlings due to

the application of phytohormone-rich culture filtrate extract of methylotrophic

actinobacterium Nocardioides sp. NIMMe6. Front Microbiol 11: 2091.

Mendes, R., Kruijt, M., De Bruijn, I., Dekkers, E., van der Voort, M., Schneider,

J.H.,

et

al.

(2011)

Deciphering

the

rhizosphere

microbiome

for

disease -

suppressive bacteria. Science 332: 1097–1100.

Menéndez, E., Pérez-Yépez, J., Hernández, M., Rodríguez-Pérez, A., Velázquez, E., and

León-Barrios, M. (2020) Plant growth promotion abilities of phylogenetically

diverse Mesorhizobium strains: effect in the root colonization and development

of tomato seedlings. Microorganisms 8.3: 412.

Minami, T., Anda, M., Mitsui, H., Sugawara, M., Kaneko, T., Sato, S., et al. (2016)

Metagenomic analysis revealed methylamine and ureide utilization of soybean associated Methylobacterium . Microbes Environ 31: 268–278.

114

Mitsui, H., Gorlach, K., Lee, H. J., Hattori, R., and Hattori, T. (1997) Incubation

time and media requirements of culturable bacteria from different phylogenetic

groups. J Microbiol Methods 30.2: 103-110.

Mitsui, H., and Hattori, T. (1997) Bacterial collections for studying soil bacterial

community. NEWSL ETTER9 6.

内藤 繁 男、 神沢 克 一、 杉 本利 哉 . (1980) テ ンサ イの 紙 筒移 植と 根 腐病 の 発生 との 関 係 . て ん

菜研 究 会報 22: 18-24.

Nakamura, Y., Ishibashi, M., Kamitani, Y. and Tsurumaru, H. (2020) Microbial community

analysis of digested liquids exhibiting different methane production potential

in methane fermentation of swine feces. Appl Biochem Biotechnol 191: 1140–1154.

Natsagdorj, O., Sakamoto, H., Santiago, D. M. O., Santiago, C. D., Orikasa, Y.,

Okazaki, K., et al. (2019) Variovorax sp. has an optimum cell density to fully

function as a plant growth promoter. Microorganisms 7(3), 82.

Oleńska, E., Małek, W., Wójcik, M., Swiecicka, I., Thijs, S., and Vangronsveld, J.

(2020). Beneficial features of plant growth-promoting rhizobacteria for improving

plant growth and health in challenging conditions: A methodical review. Sci Total

Environ 743: 140682.

Okazaki, K., Iino, T., Kuroda, Y., Taguchi, K., Takahashi, H., Ohwada, T., et al.

(2014) An assessment of the diversity of culturable bacteria from main root of

sugar beet. Microbes Environ 29: 220–223.

Okazaki, K., Tsurumaru, H., Hashimoto, M., Takahashi, H., Okubo, T., Ohwada, T., et

al. (2021) Community analysis-based screening of plant growth-promoting bacteria

for sugar beet. Microbes Environ 36: ME20137.

Okubo, T., Ikeda, S., Kaneko, T., Eda, S., Mitsui, H., Sato, S., et al . (2009)

Nodulation-dependent communities of culturable bacterial endophytes from stems

of field-grown soybeans. Microbes Environ 24.3: 253-258.

Okubo, T., Ikeda, S., Sasaki, K., Ohshima, K., Hattori, M., Sato, T., et al. (2014)

Phylogeny and functions of bacterial communities associated with field-grown rice

shoots. Microbes Environ 29: 329–332.

Okubo, T., Ikeda, S., Yamashita, A., Terasawa, K., and Minamisawa, K. (2012)

115

Pyrosequence read length of 16S rRNA gene affects phylogenetic assignment of

plant-associated bacteria. Microbes Environ 27.2: 204-208.

大久 保 卓、 池田 成 志、 南 澤究 . (2016) 植物 共生 細菌 群 集を 利用 し た持 続 的農 業 . 土と 微生 物

70.1: 10-16.

O’Sullivan, D.J., and O’Gara, F. (1992) Traits of fluorescent Pseudomonas spp.

involved in suppression of plant root pathogens. Microbiol Rev 56: 662–67.

Page, R. D. (1996) Tree View: An application to display phylogenetic trees on personal

computers. Bioinformatics 12: 357–358.

Park, Y. G., Mun, B. G., Kang, S. M., Hussain, A. , Shahzad, R., Seo, C. W., et al.

(2017) Bacillus aryabhattai SRB02 tolerates oxidative and nitrosative stress and

promotes the growth of soybean by modulating the production of phytohormones.

PLoS One 12: e0173203.

Postma, J., and Schilder, M. T. (2015) Enhancement of soil suppressiveness against

Rhizoctonia solani in sugar beet by organic amendments. Appl Soil Ecol 94: 7279.

Quecine, M. C., Araújo, W. L., Rossetto, P. B., Ferreira, A., Tsui, S., Lacava, P.

T., et al. (2012) Sugarcane growth promotion by the endophytic bacterium Pantoea

agglomerans 33.1. Appl Environ Microbiol 78: 7511–7518.

Ramos, A. C., Melo, J., de Souza, S. B., Bertolazi, A. A., Silva, R. A., Rodrigues,

W. P., et al. (2020) Inoculation with the endophytic bacterium Herbaspirillum

seropedicae promotes growth, nutrient uptake and photosynthetic efficiency in

rice. Planta 252: 1-8.

Reasoner, D. J., and Geldreich, E. (1985) A new medium for the enumeration and

subculture of bacteria from potable water. Appl Environ Microbiol 49.1: 1-7.

Rilling, J. I., Acuña, J. J., Nannipieri, P., Cassan, F., Maruyama, F., and Jorquera,

M. A. (2019) Current opinion and perspectives on the methods for tracking and

monitoring plant growth‒promoting bacteria. Soil Biol Biochem 130: 205-219.

Saitou, N., and Nei, M. (1987) The neighbor -joining method: a new method for

reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425.

Sakuma, F., Maeda, M., Takahashi, M., Hashizume, K., and Kondo, N. (2011) Suppression

116

of common scab of potato caused by Streptomyces turgidiscabies using lopsided

oat green manure. Plant Dis 95: 1124–1130.

Santiago, C.D., Yagi, S., Ijima, M., Nashimoto, T., Sawada, M., Ikeda, S., et al .

(2017). Bacterial compatibility in combined inoculations enhances the growth of

potato seedlings. Microbes Environ 32: 14-17.

Schmalenberger, A., Hodge, S., Bryant, A., Hawkesford, M. J., Singh, B. K., and

Kertesz, M. A. (2008) The role of Variovorax and other Comamonadaceae in sulfur

transformations by microbial wheat rhizosphere communities exposed to different

sulfur fertilization regimes. Environ 10.6: 1486-1500.

Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M., Hollister,

E. B., et al. (2009) Introducing mothur: open-source, platform-independent,

community-supported software for describing and comparing microbial communities.

Appl Environ Microbiol 75: 7537–7541.

Singh, B., and Satyanarayana, T. (2011) Microbial phytases in phosphorus acquisition

and plant growth promotion. Physiol Mol Biol Plants 17: 93-103.

Shi, S., Nuccio, E., Herman, D. J., Rijkers, R., Estera, K., Li, J., et al . (2015)

Successional trajectories of rhizosphere bacterial communities over consecutive

seasons. MBio 6.4 10-1128.

Shi, Y., Lou, K., and Li, C. (2009) Promotion of plant growth by phytohormone producing endophytic microbes of sugar beet. Biol Fertil Soils 45: 645–653.

Shi, Y., Lou, K., and Li, C. (2010) Growth and photosynthetic efficiency promotion

of sugar beet ( Beta vulgaris L.) by endophytic bacteria. Photosynth Res 105: 5–

13.

Shi, Y., Yang, H., Zhang, T., Sun, J., and Lou, K. (2014) Illumina -based analysis of

endophytic bacterial diversity and space -time dynamics in sugar beet on the north

slope of Tianshan mountain. Appl Microbiol Biotechnol 98: 6375–6385.

Smalla, K., Wieland, G., Buchner, A., Zock, A., Parzy, J., Kaiser, S., Roskot, N.,

Heuer, H., and Berg, G. (2001) Bulk and rhizosphere soil bacterial communities

studied by denaturing gradient gel electrophoresis: plant -dependent enrichment

and seasonal shifts revealed. Appl Environ Microbiol 67.10: 4742-4751.

117

Someya,

N.,

Kobayashi,

Y.

O.,

Tsuda,

S.,

and

Ikeda,

S.

(2013)

Molecular

characterization of the bacterial community in a potato phytosphere. Microbes

Environ 28: 295–305.

Tanaka, D., Isobe, J., Watahiki, M., Nagai, Y., Katsukawa, C., Kawahara, R., et. al .

(2008) Genetic features of clinical isolates of Streptococcus dysgalactiae subsp.

equisimilis possessing Lancefield's group A antigen. J Clin Microbiol 46.4: 15261529.

Timmusk, S., Behers, L., Muthoni, J., Muraya, A., and Aronsson, A. C. (2017)

Perspectives and challenges of microbial application for crop improvement. Front

Plant Sci 8: 49.

Thompson, J. D., Higgins, D. G., and Gibson, T. J. (1994) CLUSTAL W: improving the

sensitivity of progressive multiple sequence alignment through sequence weighting,

position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:

4673–4680.

辻博 之 . (2018) 北 海 道畑 作の 大 規模 化 にお ける 課題 と 今後 の展 望 . 農 作 業研 究 53: 3-13.

鶴丸 博 人、 橋本 萌 、池 田 成志 、南 澤 究. (2013) 植物 生 育促 進細 菌 の研 究 動向 . 日 本土 壌肥 料

学雑 誌 84.5: 418-423.

Tsurumaru, H., Okubo, T., Okazaki, K., Hashimoto, M., Kakizaki, K., Hanzawa, E., et

al . (2015) Metagenomic analysis of the bacterial community associated with the

taproot of sugar beet. Microbes Environ 30: 63–69.

内野 浩 克、渡辺 英 樹 .( 1998)テン サ イ黒 根 病の 発 生推 移 と薬 剤防 除 適期 . てん 菜研 究 会報 40:

85-91.

Unno, Y., Shinano, T., Minamisawa, K., and Ikeda, S. (2015) Bacterial community shifts

associated

with

high

abundance

of

Rhizobium

spp.

in

potato

roots

under

macronutrient-deficient conditions. Soil Biol Biochem 80: 232–236.

van der Voort, M., Kempenaar, M., van Driel, M., Raaijmakers , J. M., and Mendes, R.

(2016) Impact of soil heat on reassembly of bacterial communities in the

rhizosphere microbiome and plant disease suppression. Ecol Lett 19.4: 375-382.

Vendan, R. T., Yu, Y. J., Lee, S. H., and Rhee, Y. H. (2010) Diversity of endoph ytic

bacteria in ginseng and their potential for plant growth promotion. J Microbiol

118

48: 559–565.

Verma, J. P., Yadav, J., Tiwari, K. N., and Kumar, A. (2013) Effect of indigenous

Mesorhizobium spp. and plant growth promoting rhizobacteria on yields and

nutrients uptake of chickpea ( Cicer arietinum L.) under sustainable agriculture.

Ecol Eng 51: 282-286.

Vurukonda, S. S. K. P., Vardharajula, S., Shrivastava, M., and SkZ , A. (2016)

Enhancement of drought stress tolerance in crops by plant growth promoting

rhizobacteria. Microbiol Res 184: 13–24.

Wang, Q., Garrity, G. M., Tiedje, J. M., and Cole, J. R. (2007) Naive Bayesian

classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy.

Appl Environ Microbiol 73: 5261–5267.

Wawrik, B., Kerkhof, L., Zylstra, G. J., and Kukor, J. J. (2005) Identification of

unique type II polyketide synthase genes in soil. Appl Environ Microbiol 71.5:

2232-2238.

Weon, H. Y., Kim, B. Y., Yoo, S. H., Lee, S. Y., Kwon, S. W., Go, S. J., and

Stackebrandt, E. (2006) Niastella koreensis gen. nov., sp. nov. and Niastella

yeongjuensis sp. nov., novel members of the phylum Bacteroidetes , isolated from

soil cultivated with Korean ginseng. Int J Syst Evol Microbiol 56: 1777–1782.

Wolfgang, A., Temme, N., Tilcher, R., and Berg, G. (2023) Understanding the sugar

beet holobiont for sustainable agriculture. Front Microbiol 14: 1151052.

Wolfgang, A., Zachow, C., Müller, H., Grand, A., Temme, N., Tilcher, R., and Berg,

G. (2020) Understanding the impact of cultivar, seed origin, and substrate on

bacterial diversity of the sugar beet rhizosphere and suppression of soil -borne

pathogens. Front. Plant Sci 11: 560869.

Wu, G. D., Lewis, J. D., Hoffmann, C., Chen, Y. Y., Knight, R., Bittinger, K., et al .

(2010)

Sampling

and

pyrosequencing

methods

for

characterizing

bacterial

communities in the human gut using 16S sequence tags. BMC microbiol 10: 206.

Yeoh, Y. K., Paungfoo‐Lonhienne, C., Dennis, P. G., Robinson, N., Ragan, M. A.,

Schmidt, S., et al. (2016) The core root microbiome of sugarcanes cultivated

under varying nitrogen fertilizer application. Environ Microbiol 18: 1338–1351.

119

Yin, C., Casa Vargas, J. M., Schlatter, D. C., Hagerty, C. H., Hulbert, S. H., and

Paulitz, T. C. (2021) Rhizosphere community selection reveals bacteria associated

with reduced root disease. Microbiome 9: 86.

Yin, C., Hulbert, S. H., Schroeder, K. L., Mavrodi, O., Mavrodi, D., Dhingra, A., et

al . (2013) Role of bacterial communities in the natural suppression of Rhizoctonia

solani bare patch disease of wheat ( Triticum aestivum L.). Appl Environ Microbiol

79: 7428–7438.

吉村 康 弘、 柳沢 朗 、大 槌 勝彦 . (1991) 苗 質の 違 いが テ ンサ イの 生 育・ 収 量に 及ぼ す 影響 に つ

いて . 育種 ・作 物 学会 北 海道 談話 会 会報 31: 15.

Zachow, C., Jahanshah, G., de Bruijn, I., Song, C., Ianni, F., Pataj, Z., et al.

(2015) The novel lipopeptide poaeamide of the endophyte Pseudomonas poae RE* 11-14 is involved in pathogen suppression and root colonization. MPMI 28.7: 800810.

Zachow, C., Müller, H., Tilcher, R., and Berg, G. (2014) Differences between the

rhizosphere microbiome of Beta vulgaris ssp. maritima—ancestor of all beet crops—

and modern sugar beets. Front Microbiol 5: 415.

Zhang, K., Wang, Y., Tang, Y., Dai, J., Zhang, L., An, H., et al. (2010) Niastella

populi sp. nov., isolated from soil of Euphrates poplar ( Populus euphratica )

forest, and emended description of the genus Niastella . Int J Syst Evol Mi ...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る