リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「High-Power Simultaneous Wireless Information and Power Transfer System Based on an Injection-Locked Magnetron Phased Array」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

High-Power Simultaneous Wireless Information and Power Transfer System Based on an Injection-Locked Magnetron Phased Array

Yang, Bo Chu, Jie Mitani, Tomohiko Shinohara, Naoki 京都大学 DOI:10.1109/lmwc.2021.3104832

2021.12

概要

We built a phased array system for high-power simultaneous wireless information and power transfer (SWIPT) using four 5.8-GHz injection-locked magnetrons. In the magnetron injection-locked state, the transmission efficiency was measured at different modulation rates. The fluctuation in the transmission efficiency was not more than 0.5%. We observed that dynamic beamforming does not affect communication quality. Using the magnetron phased array system, SWIPT experiments revealed that a frequency modulated (FM) signal that carries a video camera signal is transmitted and decoded during dynamic beamforming. In this SWIPT system, the main lobe transfers power, and information can be demodulated in front of the magnetron phased array from −90° to 90°. The maximum transmitted microwave power of the proposed system is 1637 W.

この論文で使われている画像

参考文献

[1] A. Takacs, H. Aubert, S. Fredon, L. Despoisse and H. Blondeaux,

"Microwave Power Harvesting for Satellite Health Monitoring," in IEEE

Transactions on Microwave Theory and Techniques, vol. 62, no. 4, pp.

1090-1098, April 2014, doi: 10.1109/TMTT.2014.2303425.

[2] D. Arnitz and M. S. Reynolds, "MIMO Wireless Power Transfer for

Mobile Devices," in IEEE Pervasive Computing, vol. 15, no. 4, pp. 36-44,

Oct.-Dec. 2016, doi: 10.1109/MPRV.2016.67.

[3] L. Xie, Y. Shi, Y. T. Hou and A. Lou, "Wireless power transfer and

applications to sensor networks," in IEEE Wireless Communications, vol.

20, no. 4, pp. 140-145, August 2013, doi: 10.1109/MWC.2013.6590061.

[4] N. Takabayashi, N. Shinohara, T. Mitani, M. Furukawa and T. Fujiwara,

"Rectification Improvement with Flat-Topped Beams on 2.45-GHz

Rectenna Arrays," in IEEE Transactions on Microwave Theory and

Techniques, vol. 68, no. 3, pp. 1151-1163, March 2020, doi:

10.1109/TMTT.2019.2951098.

[5] A. Sample and J. R. Smith, "Experimental results with two wireless power

transfer systems," 2009 IEEE Radio and Wireless Symposium, San Diego,

CA, 2009, pp. 16-18, doi: 10.1109/RWS.2009.4957273.

[6] N. Shinohara, "History and Innovation of Wireless Power Transfer via

Microwaves," in IEEE Journal of Microwaves, vol. 1, no. 1, pp. 218-228,

winter 2021, doi: 10.1109/JMW.2020.3030896.

[7] Energies, Receives FCC Approval, Extending Charging Zone to Up to 1

Meter for Groundbreaking Over-the-Air, Power-at-a-Distance Wireless

Charging, Accessed: May. 10, 2021. [Online]. Available:

https://ir.energous.com/press-releases/detail/672/energous-receives-fcc-ap

proval-extending-charging-zone-to

[8] Global Banking & Finance Review, Ossia Receives FCC Authorization for

Its Next Generation Platform for Wireless Power at a Distance, Accessed:

May. 10, 2021. [Online]. Available:

https://www.globalbankingandfinance.com/category/news/ossia-receivesfcc-authorization-for-its-next-generation-platform-for-wireless-power-ata-distance/amp/

[9] T. D. Ponnimbaduge Perera, D. N. K. Jayakody, S. K. Sharma, S.

Chatzinotas and J. Li, "Simultaneous Wireless Information and Power

Transfer (SWIPT): Recent Advances and Future Challenges," in IEEE

Communications Surveys & Tutorials, vol. 20, no. 1, pp. 264-302,

Firstquarter 2018, doi: 10.1109/COMST.2017.2783901.

[10] R. Zhang and C. K. Ho, "MIMO Broadcasting for Simultaneous Wireless

Information and Power Transfer," in IEEE Transactions on Wireless

Communications, vol. 12, no. 5, pp. 1989-2001, May 2013, doi:

10.1109/TWC.2013.031813.120224.

[11] D. W. K. Ng, E. S. Lo and R. Schober, "Wireless Information and Power

Transfer: Energy Efficiency Optimization in OFDMA Systems," in IEEE

Transactions on Wireless Communications, vol. 12, no. 12, pp. 6352-6370,

December 2013, doi: 10.1109/TWC.2013.103113.130470.

[12] B. Yang, T. Mitani, N. Shinohara, “Experimental Study on a 5.8 GHz

Power-Variable Phase-Controlled Magnetron”, IEICE Transactions on

Electronics, Vol.E100-C, No. 10, pp. 901-907, Oct. 2017.

[13] C. Liu, H. Huang, Z. Liu, F. Huo and K. Huang, "Experimental Study on

Microwave Power Combining Based on Injection-Locked 15-kW S -Band

Continuous-Wave Magnetrons," in IEEE Transactions on Plasma Science,

vol. 44, no. 8, pp. 1291-1297, Aug. 2016, doi: 10.1109/TPS.2016.2565564.

[14] I. Tahir, A. Dexter, and R. Carter, “Frequency and phase modulation

performance of an injection-locked CW magnetron,” IEEE Trans. Electron

Devices, vol. 53, no. 7, pp. 1721–1729, Jul. 2006.

[15] B. Yang, T. Mitani, N. Shinohara, “Evaluation of the Modulation

Performance of Injection-Locked Continuous-Wave Magnetrons,” IEEE

Transactions on Electron Devices, Vol. 66, pp. 709-715, Jan. 2019

[16] B. Yang, T. Mitani and N. Shinohara, "Injection-Locked CW Magnetron

for a wirelessly-powered TV," 2019 International Vacuum Electronics

Conference (IVEC), Busan, Korea (South), 2019, pp. 1-2, doi:

10.1109/IVEC.2019.8745010.

[17] B. Yang, X. Chen, J. Chu, T. Mitani and N. Shinohara, "A 5.8-GHz Phased

Array System Using Power-Variable Phase-Controlled Magnetrons for

Wireless Power Transfer," IEEE Transactions on Microwave Theory and

Techniques, Vol.68, No.11, 2020, doi: 10.1109/TMTT.2020.3007187.

[18] JAXA. Ground Demonstration Testing of Microwave Wireless Power

Transmission. Accessed: May. 10, 2021. [Online]. Available:

https://www.kenkai.jaxa.jp/eng/research/ssps/150301.html

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る